

SEXAGEM FETAL: Avanços no diagnóstico prénatal não-invasivo

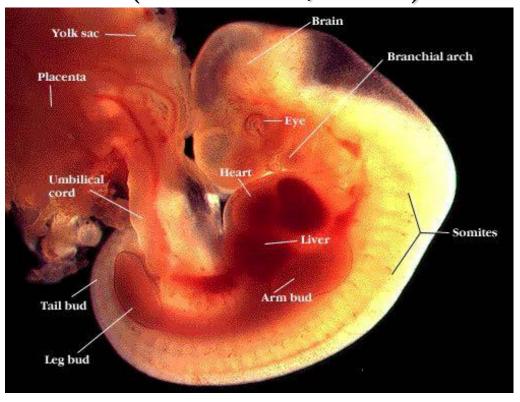
Palestrante: JOSÉ EDUARDO LEVI, INSTITUTO DE MEDICINA TROPICAL DA USP, FUNDAÇÃO PRÓ-SANGUE/HEMOCENTRO DE SÃO PAULO

dudilevi@usp.br

Patrocínio:

BIOTECNOLOGIA E QUÍMICA LTDA

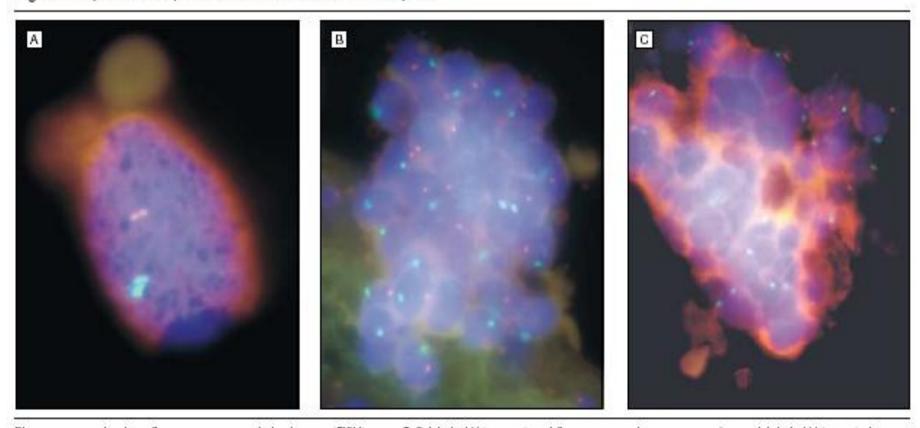
Apoio:

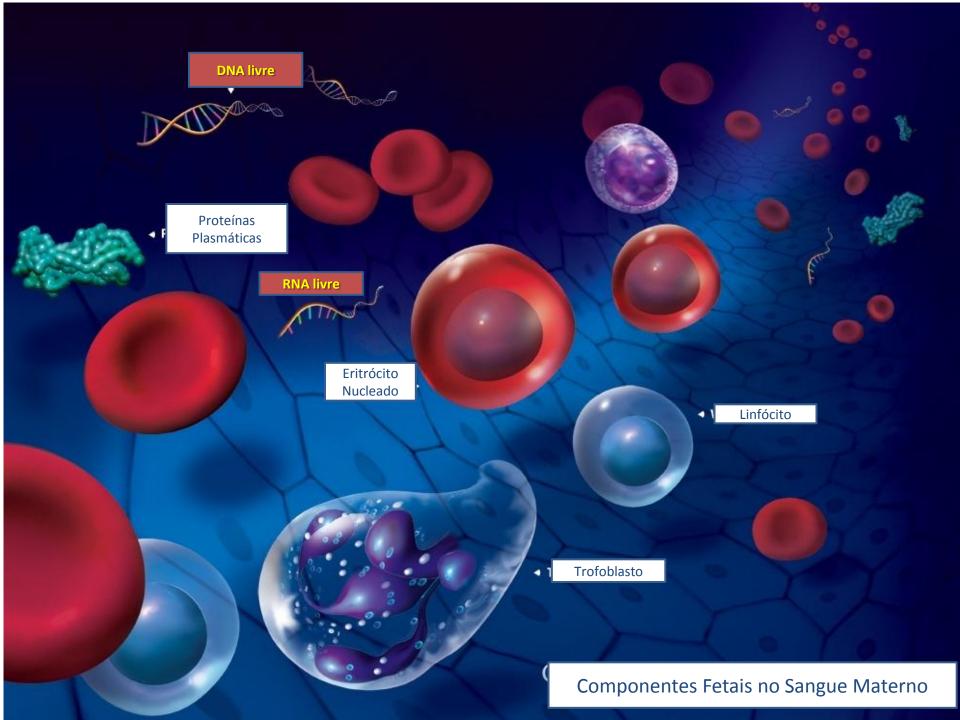


Local: Auditório do Bloco H do Centro de Ciências da Saúde da Universidade Federal de Santa Catarina (UFSC)

HISTÓRICO

EXISTEM CÉLULAS FETAIS CIRCULANTES NO SANGUE MATERNO EM TODAS AS FASES DA GRAVIDEZ


(taxas de 1:50.000/5.000.000)


<u>TIPOS CELULARES</u>: TROFOBLASTOS, ERITROBLASTOS, LEUCÓCITOS E <u>STEM CELLS</u> CD34+

Transfer of Fetal Cells With JAMA, JULY, 2004; 292(1):75-80 Multilineage Potential to Maternal Tissue

Figure 1. Cytokeratin Expression in Microchimeric Cells in Thyroid

Photomicrographs show fluorescence in situ hybridization (FISH) using Cy3-labeled X (orange) and fluorescein isothiocyanate conjugated-labeled Y (green) chromosome probes and immunofluorescence staining for cytokeratin using mouse monodonal AE1/AE3 anticytokeratin antibody and fluorochrome Texas Red (red). Nuclei are counterstained with 4',6-diamidino-2-phenylindole (blue). A, Male microchimeric cell with 1 Y chromosome (green), 1 X chromosome (orange), and stained with anticytokeratin antibody (red) (patient A; magnification × 1000). B, Interphase FISH of thyroid tissue showing a group of microchimeric cells identified by the presence of X and Y chromosomes (orange and green, respectively). The X or Y chromosome may not be observed in each nucleus, as they may not be in the same plane of focus (patient C; magnification × 400). This group of cells clid not stain positively for cytokeratin. C, Combined FISH and immunofluorescence staining of a group of microchimeric cells with 1 X and 1 Y chromosome. This group of cells expresses cytokeratin (red). The X or Y chromosome may not be observed in each cell, as they may not be in the same plane of focus (patient A; magnification × 400).

HISTÓRICO

Detection of single-copy fetal DNA sequence from maternal blood. Lo Y-M et al, *Lancet* 1990, 33: 1463-1464.

Prenatal determination of fetal RhD status by analysis of peripheral blood of rhesus negative mothers. Lo Y-M et al, *Lancet* 1993, 341: 1147-1148.

Cancer and mutant DNA in blood plasma. Mulcahy HE et al, *Lancet* 1996, 348: 628.

Microsatellite alterations in serum DNA of head and neck cancer patients.

Nawroz H et al, *Nature Medicine* 1996, 2: 1035-1037.

HISTÓRICO

Presence of fetal DNA in maternal plasma and serum. Lo Y-M et al, *Lancet* 1997, 350: 485-487.

Detection of RHD-specific sequences in maternal plasma. Faas BHW et al, *Lancet* 1998, 352: 1196.

Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma.

Lo Y-M et al., New Engl J Med 1998, 339: 1734-1738.

EXISTE DNA FETAL LIVRE NO PLASMA MATERNO EM PROPORÇÕES BEM MAIORES QUE A DE CÉLULAS MATERNAS/FETAIS NO SANGUE PERIFÉRICO.

Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis.

Lo Y-M et al, Am J Hum Genet, 1998, 62: 768-775.

Resultados de 30 grávidas com fetos masculinos

25.4 genome equivalents/mL (early pregnancy) - 3,4% do total 292.2 genome equivalents/mL (late pregnancy) - 6,2% do total

O DNA FETAL LIVRE PODE SER DETECTADO JÁ NO PRIMEIRO MÊS DE GRAVIDEZ

Kinetics of SRY gene appearance in maternal serum: detection by real time PCR in early pregnancy after assisted reproductive technique. Guilbert J et al *Human Reproduction*, 18:1733-1736, 2003.

Todas grávidas de meninos. 1 paciente 18 dias, 9 pacientes em até 37 dias após a transferência de embrião.

O DNA FETAL LIVRE NO PLASMA MATERNO É RAPIDAMENTE ELIMINADO NA URINA EM ATÉ 48 HORAS APÓS O PARTO

Rapid clearance of fetal DNA from maternal plasma. Lo Y-M et al, *Am J Hum Genet* 1999, 64: 218-224.

12 grávidas pré-parto até 1-42h pós-parto.

Vida média do DNA fetal circulante = 16 minutos

QUANTIDADES "ANORMAIS" (ELEVADAS) DE DNA FETAL LIVRE NO PLASMA MATERNO INDICAM SOFRIMENTO PLACENTÁRIO E/OU FETAL

Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Lo Y-M et al, Clin Chem 1999, 45: 184-188.

Cell-free fetal DNA (SRY locus) concentration in maternal plasma is directly correlated to the time elapsed from the onset of preeclampsia to the collection of blood.

Farina et al, *Prenat Diagn* 2004, 2: 293-297.

Origem dos ácidos nucleicos fetais em gestantes:

Trofoblastos da Placenta

- Detecção de DNA fetal livre em gestações anembrionadas (Alberry et al., 2007) (Sekizawa et al., 2005)
- Estudo de caso com placenta increta (Jimbo et al., 2003)

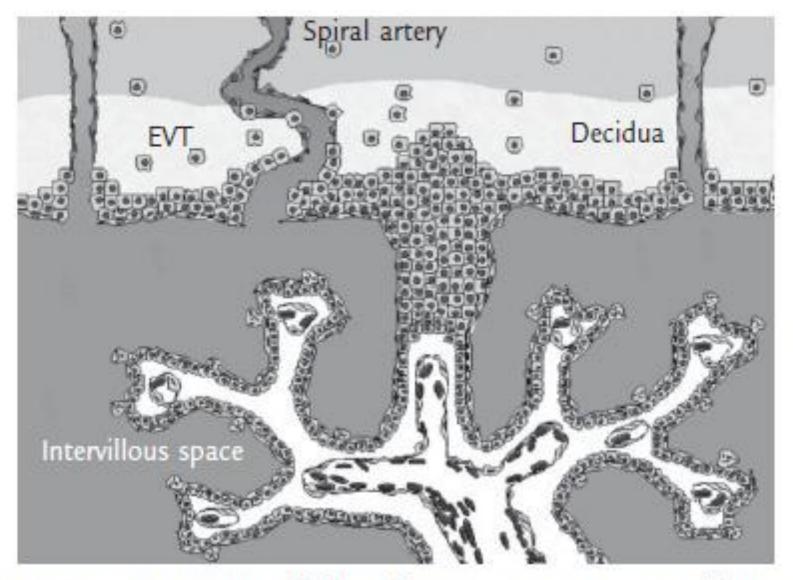


Figure. Structure of the placenta. EVT = extravillous trophoblasts.

ESTUDO

Determinação do sexo fetal pela análise do plasma materno

PACIENTES:

- Voluntárias
- Qualquer idade gestacional

Termo de consentimento livre e esclarecido

Coleta de 5 mL de sangue periférico

Local: Banco de Sangue Hosp. Sírio Libanês, São Paulo - SP

ESTUDO

Determinação do sexo fetal pela análise do plasma materno

MÉTODO:

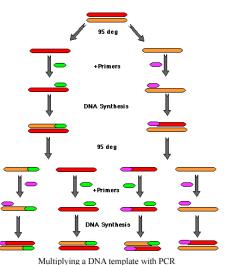
Extração de DNA e PCR de região do Cromossomo Y DYS14 – gene expresso no testículo

RESULTADO:

Checado pela informação obtida das mães pelo ultra-som ou nascimento.

Período: Dez/2001 - Julho 2003

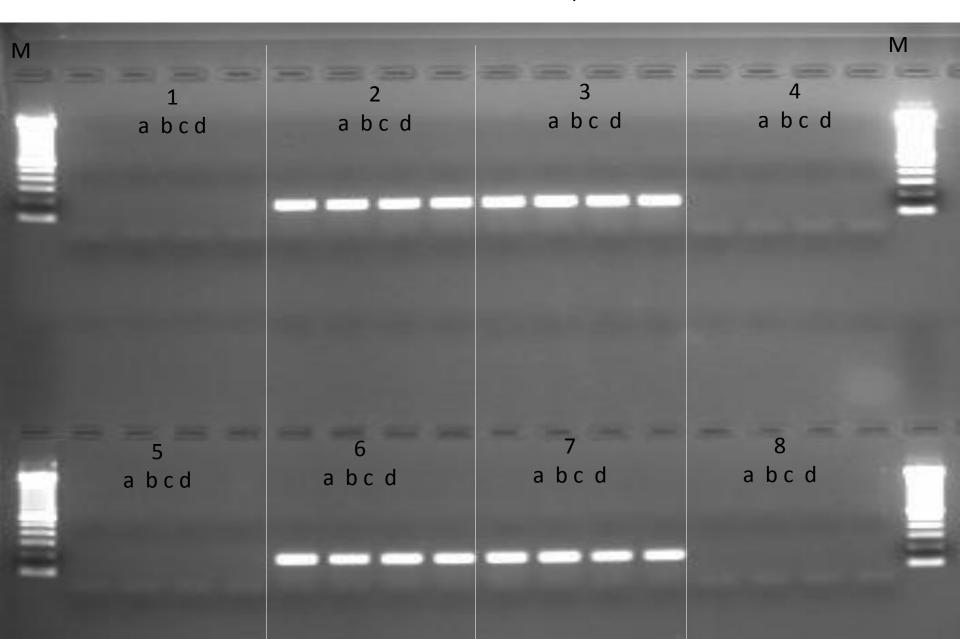
N = 200

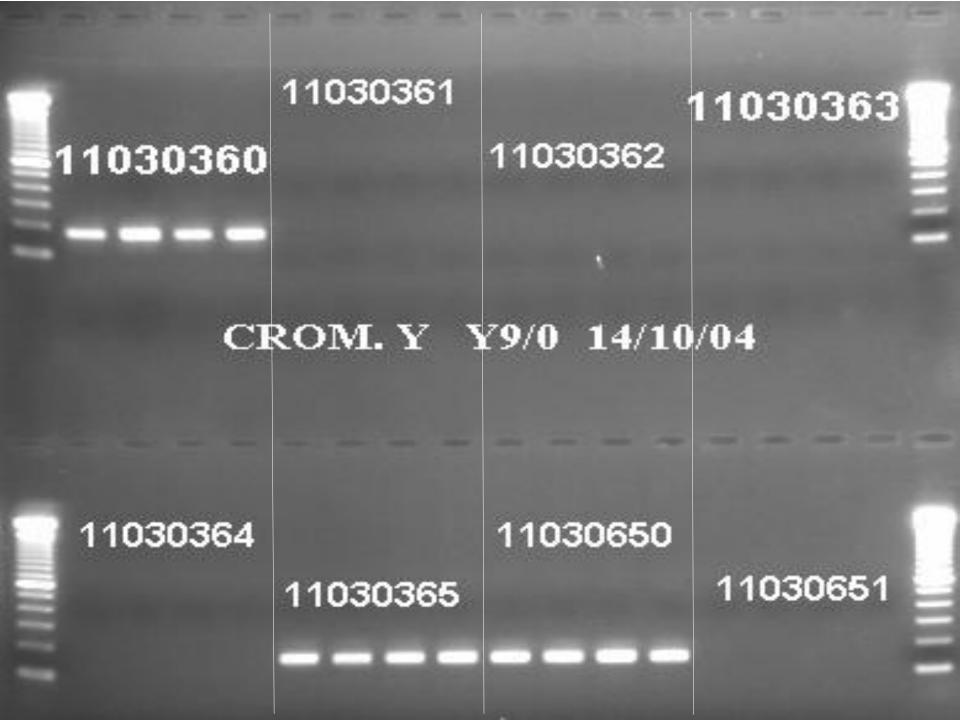


MÉTODO DE PCR

O sangue total é centrifugado e o plasma separado em até 2 horas da coleta.

O DNA é isolado em duplicatas de 140 µL de plasma por um método comercial de extração baseado em microcolunas de sílica.





Uma fração do DNA isolado, correspondendo á 30 µL de plasma é submetido a reação de PCR com primers do gene DYS14, amplificando um fragmento de 198 pares de bases.

DETERMINAÇÃO DO SEXO FETAL

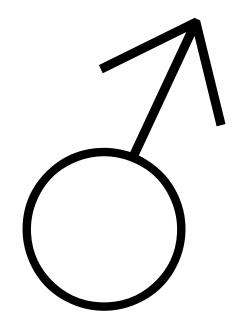
LEVI et al., Rev. Bras. Ginecol. Obstet., 2003, vol.25, no.9, p.687-690

11030742 11030744 11030741 11030743

CROM. Y Y9/0 08/12/04

11031376 11030745 11031377

CASUÍSTICA C/ CONFIRMAÇÃO 1.026 PACIENTES sobre um total de 6.000 exames realizados (Agosto 2008)


	N=
ATÉ 8 SEMANAS	48
8-10	489
11-12	197
>=13	292
TOTAL	1026

CASUÍSTICA C/ CONFIRMAÇÃO 1.026 PACIENTES

Índice de acerto	MENINA	MENINO	GERAL
ATÉ 8 SEMANAS	77,27%	100,00%	89,58%
8-10	98,82%	100,00%	99,38%
11-12	98,99%	100,00%	99,49%
>=13	99,38%	100,00%	99,66%
GERAL	98,14%	100,00%	99,02%

DETECÇÃO MAIS PRECOCE

5 SEMANAS

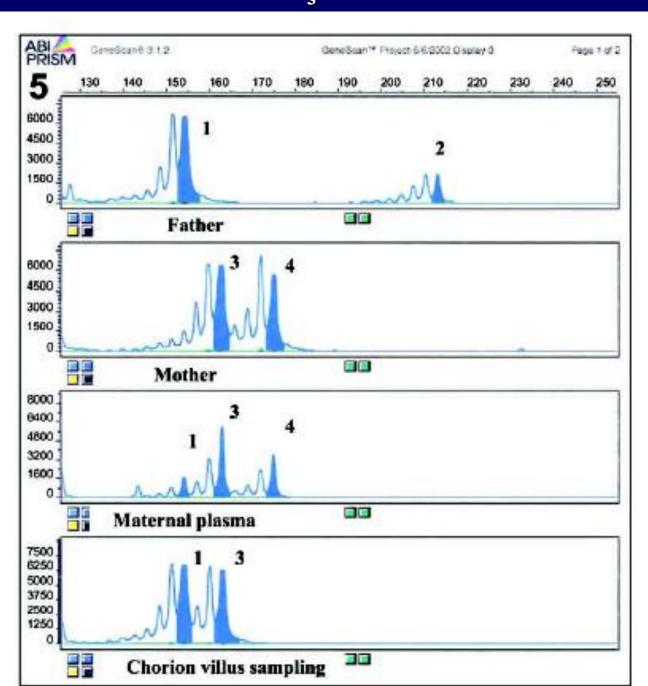
ERROS

SOMA GERAL ATÉ AGOSTO 2008								
	N=	ERROS	A/O	O/A	RES A	RES O	TOTAL	
ATÉ 8 SEMANAS	48	5	5	0	22	26	48	
8-10	489	3	3	0	254	233	487	
11-12	197	1	1	0	99	98	197	
>=13	292	1	1	0	162	130	292	
TOTAL	1026	10	10	0	537	487	1024	

CONCLUSÕES

- ▶ O método apresentou uma excelente especificidade.
- ► A sensibilidade é maior para fetos do sexo masculino, principalmente no começo da gestação (< 8 semanas).
- ▶ No caso de resultado de sexo feminino nas primeiras 8 semanas sugere-se a repetição do teste com idade gestacional mais avançada.

Técnicas e Métodos


Determinação Pré-natal do Sexo Fetal por meio da Análise de DNA no Plasma Materno

Prenatal Fetal Gender Determination by Analysis of DNA from Maternal Pasma

José Eduardo Levi^{1,}, Silvano Wendel^{1,2}, Deise Tihe Takaoka²

DIAGNÓSTICO PRÉ-NATAL DA DOENÇA DE HUNTINGTON

Figure 5 HD study of a healthy fetus in maternal plasma. (From González-González et al. Prenat Diagn 2003;23:232–234. Copyright John Wiley & Sons, Ltd. Reproduced with permission.)

Determinação do Rh fetal através de análise do plasma materno

OBJETIVOS:

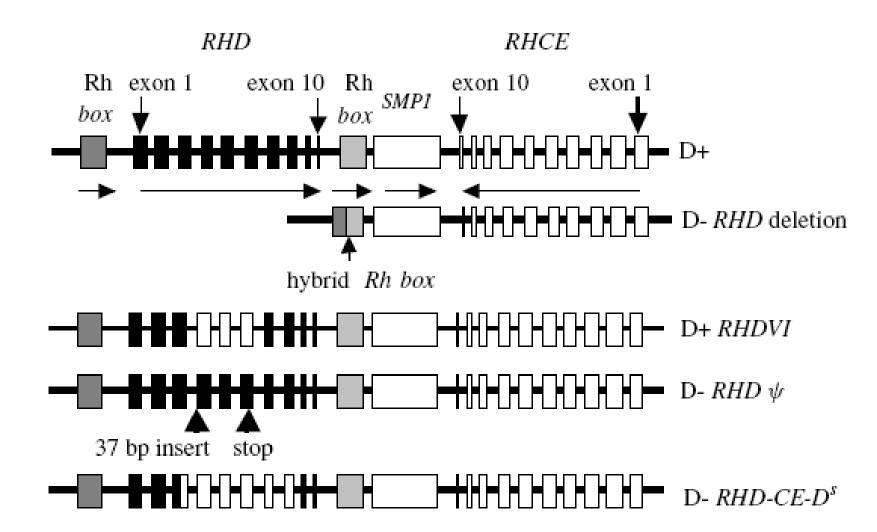
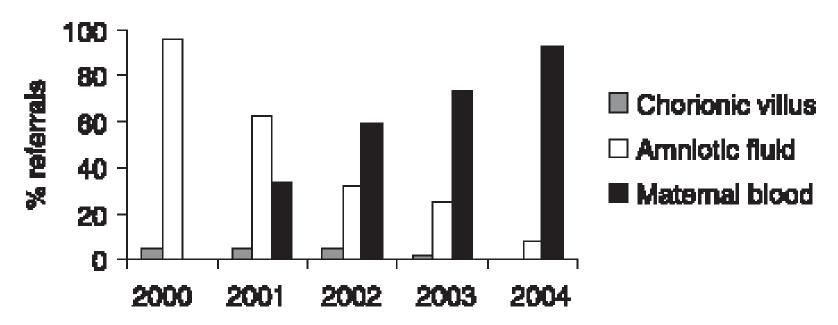
- 1- Evitar a triagem sistemática de mães RhD-negativas para a presença de anticorpos anti-D.
- 2- Evitar procedimentos invasivos de monitoração de DHPN.
- 3- Evitar o uso da "vacina" anti-D (imunoprofilaxia) para :
- Grávidas submetidas á procedimentos invasivos como amniocentese e biópsia de vilosidade coriônica, além de hemorragias.

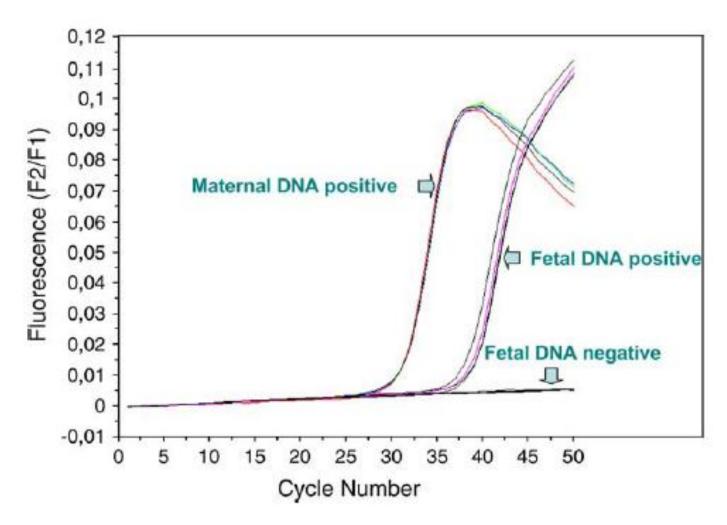
IMUNOPROFILAXIA ANTI-D:

Imunobiológico de origem humana. Normalmente administrado em 2 doses, uma na 28ª-30ª semana de gestação, outra logo após o parto.

INCONVENIENTES:

- Transmissão de agentes infecciosos
- Custo de cada dose é de aproximadamente R\$ 210,00
- Baixa oferta


Figure 1—Diagram of the Rh genes, the *Rh boxes* flanking *RHD*, and *SMP1* between *RHD* and *RHCE*, in five haplotypes, two producing D (D+) and three producing no D (D-)

Prenat Diagn 2009; **29**: 101–107.

A clinical service in the UK to predict fetal Rh (Rhesus) D blood group using free fetal DNA in maternal plasma. Finning K, Martin P and Daniels G. Annals of the New York Academy of Sciences June 2004, 1022:119-123.

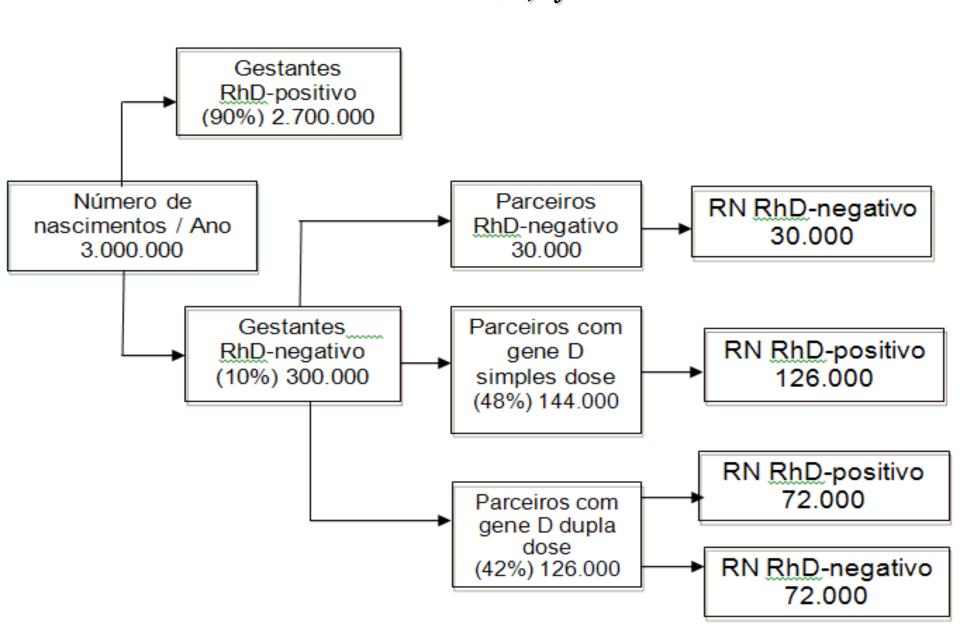
Fig. 1 Proportional changes in the source of fetal DNA in samples referred to the International Blood Group Reference Laboratory (IBGRL), Bristol, for fetal *RHD* genotyping between 2000 and 2004.

Figure Detection of the RHD gene in maternal serum using real-time PCR. Typical results observed from patient samples: one giving a positive result for fetal DNA (1), the second a negative one (2), and the third one corresponding to an RhD-negative woman but carrying the RHD gene in her genome (3).

Effect of high throughput *RHD* typing of fetal DNA in maternal plasma on use of anti-RhD immunoglobulin in RhD negative pregnant women: prospective feasibility study

BMJ 2008;336;816-818;

Results of testing 1869 DNA samples from plasma of RhD negative pregnant women for fet al RHD and comparison with serologically determined phenotype of her baby's cord sample*


Predicted phenotype from fetal DNA	Serological phenotype of cord sample	No (%)	Conclusion
RhD postive	RhD postive	1118 (59.8)	Correct
RhD negative	RhD negative	670 (35.9)	Correct
RhD positive	RhD negative	14 (0.8)	False positive
RhD negative	RhD postive	3 (0.2)	False negative
RHD variant	4 RhD postive/4 RhD negative	8 (0.4)	Inconclusive
Inconclusive	13 RhD postive†/18 RhD negative	31 (1.7)	Inconclusive
Inconclusive‡	18 RhD postive/7 RhD negative	25 (1.3)	Inconclusive

^{*}If anti-RhD is given only when predicted phenotype from DNA is RhD positive, sensitivity of test is 96.7% (95% CI 95.5% to 97.6%) and specificity is 98% (96.7% to 98.8%). If anti-RhD is given when predicted phenotype from DNA is RhD positive, *RHD* variant, or inconclusive, sensitivity is 99.7% (99.2% to 99.9%) and specificity is 94% (92.0% to 95.5%).

†One resulting from DNA extraction failure.

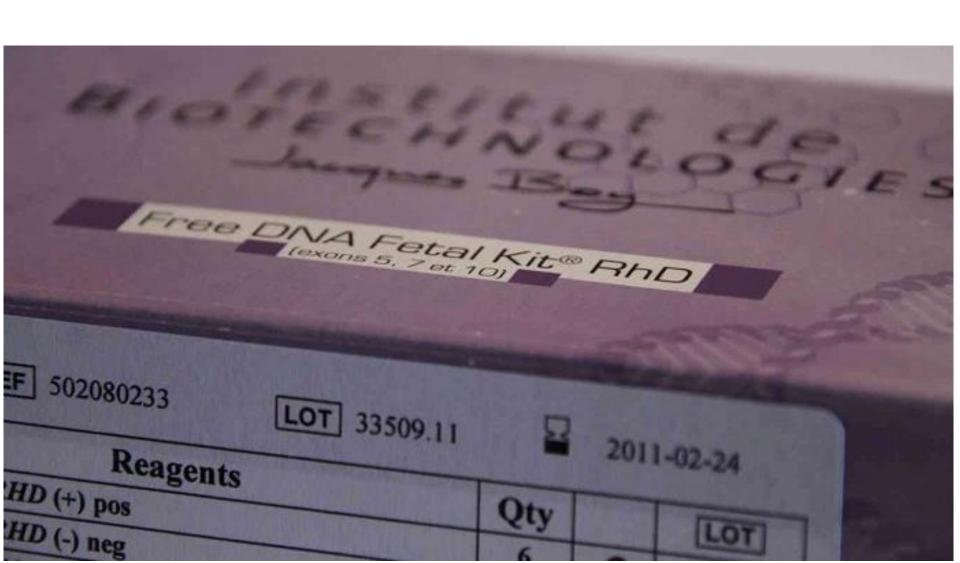
‡RHD detected in maternal DNA.

PROJEÇÃO BRASIL – Tese Mestrado Shirley Lopes de Castilho , Instituto Fernandes Figueira FIOCRUZ, RJ

The controversy about controls for fetal blood group genotyping by cell-free fetal DNA in maternal plasma

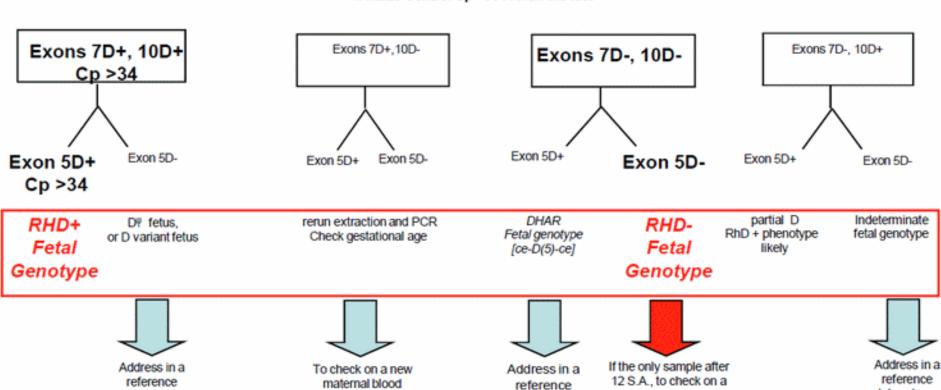
Peter G. Scheffer^{a,b}, Masja de Haas^{a,c} and C. Ellen van der Schoot^a

Table 1 Published studies on fetal blood group genotyping in maternal plasma (January 2009-June 2011)


Author	Technique	No. samples tested ^a	Gestation (weeks)	Tested plasma equivalent (ml) per replicate ^c	No. replicates	Target gene/allele	Total cell-free DNA control	Fetal cell-free DNA control	Sensitivity (%)	False- negative results
Akolekar et al. [11°]	Real-time PCR	591	11-14	N/A	3	RHD	CCR5	None	98.2	6
Bombard et al. [12]	Mass spectrometry	236	11-13	0.33	1	RHD	TGIF	DBY, SRY, TTTY2 ^b	97.2	4
Scheffer et al. [13*]	Real-time PCR	212	7-38	0.33	3	RHD, c, E, K	albumin	SRY, biallelic polymorphisms	100	0
Gutensohn et al. [14]	Real-time PCR	181 ^d	12-28	N/A	2	C, c, E	β-globin	None	100	0
Grill et al. [15]	Mass spectrometry	178	N/A	0.04	2	RHD	None	None	96.1	5
Tynan et al. [16]	Mass spectrometry	150	<32	0.36	1	RHD	albumin, AMG	SRY ^b	100	0
Hyland et al. [17]	Real-time PCR	140	12-40	0.07	4	RHD	CCR5	SRY, RASSF1A	100	0
Achargui et al. [18]	Conventional PCR	120	10-40	0.13	1	RHD	None	None	98.8	1
Chinen et al. [19]	Real-time PCR	102	7-36	0.08	3	RHD	β-globin	None	100	0
Cardo et al. [20]	Real-time PCR	100	9-13	N/A	3	RHD	β-globin	None	100	0
Clausen et al. [21]	Real-time PCR	97 ^e	6-37	0.04	3	RHD	GAPDH	None	98.7	1
Sedrak et al. [22]	Real-time PCR	90	7-24	N/A	2	RHD	β-globin	None	96.7	2
Amaral et al. [23]	Real-time PCR	88	11-39	0.07	3	RHD	CCR5	SRY ^b	100	0
Tounta et al. [24*]	Multiplex fluorescent PCR	84	7-24	0.16	2	RHD	None	SRY, RASSF1A	100	0
Wang et al. [25]	Real-time PCR	78	14-40	0.16	3	RHD	β-globin	SRY, STR's	100	0
Mohammed et al. [26]	Real-time PCR	21	20-39	0.08 - 0.17	2	RHD	β-globin	None	92.3	1

Current Opinion in Hematology 2011,

18:467-473


Free DNA Fetal Kit ® RhD Non invasive fetal RHD genotyping in RhD-Negative pregnant women plasma DNA (Real-Time PCR)

Ref.: 502080233

Interpretation guide - RHD Fetal genotyping on maternal blood

In all cases, the Maize DNA Control must be positive If Maize Control Cp >36 : rerun the test

laboratory

collection at least two

weeks later

laboratory

new maternal blood

collection at least two

weeks later

laboratory.

Test RhD and

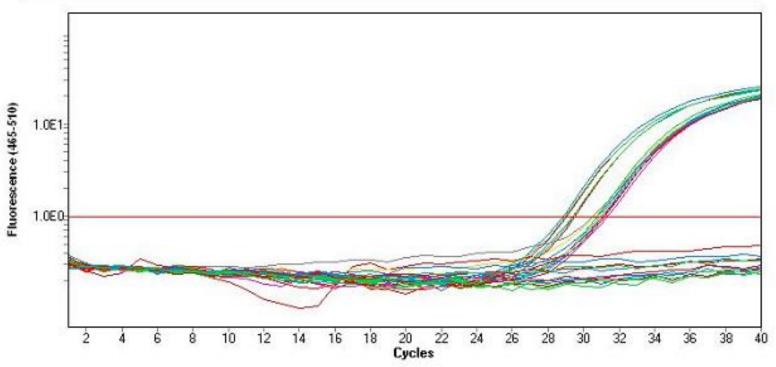
Rh C,c,E,e

phenotypes in the newborn

Table S2. Scoring model for fetal *RHD* exon 5, *RHD* exon 7, *c*, *E* and *K* polymerase chain reaction

	ls	olatior	1 1	Is	olatior	1 2		
Replicate	1	2	3	1	2	3	Test result	Further proceedings
	+	+	+	+	+	+	Positive	Report positive fetal blood group antigen
	+	+	+	+	+	-	Positive	Report positive fetal blood group antigen
	+	+	-	+	+	-	Positive	Report positive fetal blood group antigen
	+	+	+	+	-	-	Inconclusive	Repeat test with same sample
	+	+	+	-	-	-	Inconclusive	Repeat test with same sample
	+	+	-	-	-	-	Inconclusive	Repeat test with same sample
	+	+	-	+	-	-	Inconclusive	Repeat test with new sample
	+	-	-	+	-	-	Inconclusive	Repeat test with same sample
	+	-	-	-	-	-	Negative	Confirm presence of fetal DNA; report negative fetal blood
								group antigen
	-	-	-	-	-	-	Negative	Confirm presence of fetal DNA; report negative fetal blood
								group antigen

PCR, polymerase chain reaction; Ct, cycle threshold value.


Replicates are scored positive (+) if Ct is 34 or more and negative (-) if no amplification is observed. Ct's under 34 in the *RHD* exon 5 and/or *RHD* exon 7 PCR suggest amplification of maternal DNA and are scored as inconclusive. Ct's over 43 in the *K* PCR are scored as inconclusive because of potential non-specific amplification of the maternal *k* allele.

BJOG 2011;118:1340–1348.

RESULTADOS TESE MESTRADO ALUNA KAREN CHINOCA, DEPTO. DE GINECOLOGIA E OBSTETRÍCA DA FMUSP

Amplification Curves

RESULTADOS TESE MESTRADO ALUNA KAREN CHINOCA, DEPTO. DE GINECOLOGIA E OBSTETRÍCA DA FMUSP

Tabela 5b : Resultados do DNA Plasmático x Fenotipagem do RN após a repetição dos Inconclusivos

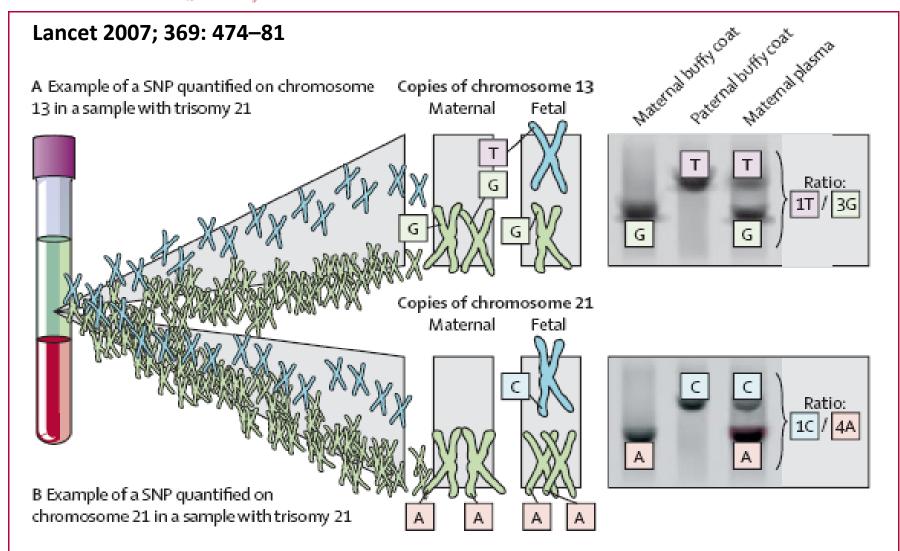
	RESULTADO RN		
DNA PLASMÁTICO	Rh pos (n=81)	Rh neg (n=32)	
Positivo	81 (100%)	0 (0%)	
Inconclusivo	0	4 (12,5%)	
Negativo	0	28 (87,5%)	

Noninvasive fetal blood group genotyping of rhesus D, c, E and of K in alloimmunised pregnant women: evaluation of a 7-year clinical experience

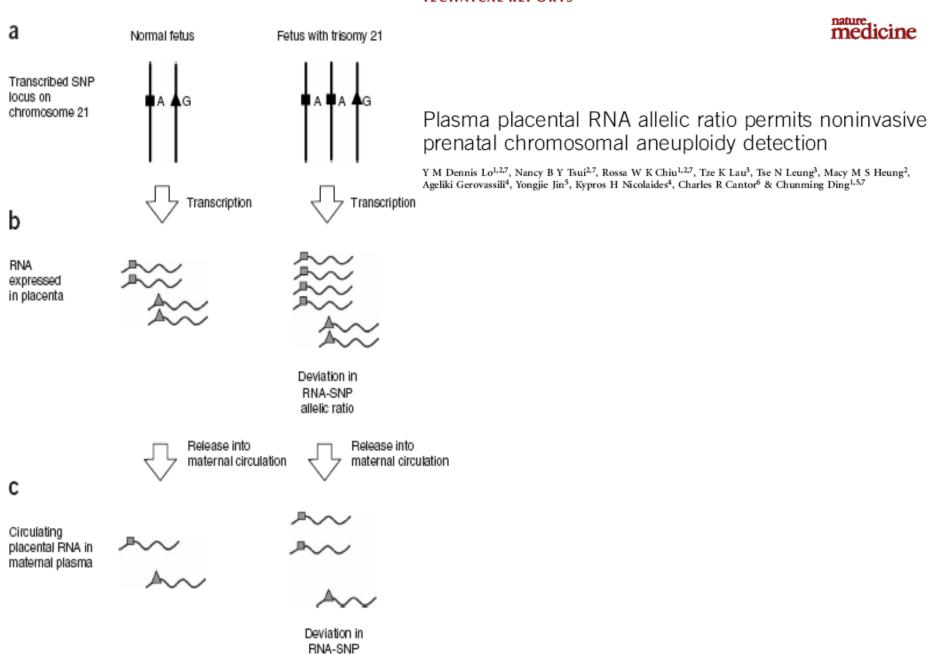
Table 2. Results for maternal and paternal *RHD* analysis performed because of atypical fetal *RHD* exon 5 and/or *RHD* exon 7 polymerase chain reaction results

Case	RHD PCR plasma		Maternal RHD	Paternal RHD	Conclusion fetal	
	Exon 5 Ct	Exon 7 Ct	analysis (genotype)	analysis (genotype)	RhD status	
1	37	32	RHDΨ/d	N/A	D positive	
2	39	29	RHDΨ/d	N/A	D positive	
3	35	30	RHDΨ/d	RHDIDAU	D positive	
4	38	31	RHDΨ/d	N/A	D positive	
5	38	32	RHDΨ/d	RHD/RHD	D positive	
6	37	30	RHDΨ/RHD-CE-D ^s	RHD/DIII type 5	D positive	
7	38	Und	d/d	DIVa/d	D positive	
8	Und	36	d/d	RHD/DAU5	D positive	
9	35	39	d/d	RHD/DNU	D positive	
10	Und	31	RHDΨ/d	RHDΨ/DAU	D negative	
11	Und	31	RHD Ψ/RHD-CE-D ^s	N/A	D negative	
12	30	30	RHD(343delC)/d	N/A	inconclusive	
13	31	31	RHD(IVS1+1G>A)/d	d/d	inconclusive	

Ct, cycle threshold value; d, deletion/complete absence of RHD gene; N/A, not available; RHD, normal RHD gene; $RHD\Psi$, RHD pseudogene; Und, undetermined (no amplification).


DAU, DIII type 5, DIVa, DAU5 and DNU: RHD variant genes leading to a D-positive phenotype.

 $RHD\Psi$, RHD-CE- D^s , RHD(343delC) and RHD(IVS1+1G>A): RHD variant genes leading to a D-negative phenotype.



M A non-invasive test for prenatal diagnosis based on fetal DNA present in maternal blood: a preliminary study

Ravinder Dhallan, Xin Guo, Sarah Ernche, Marian Damewood, Philip Bayliss, Michael Cronin, Julie Barry, Jordan Betz, Kara Franz, Katie Gold, Brett Vallecillo, John Varney

medicine

allelic ratio

Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood

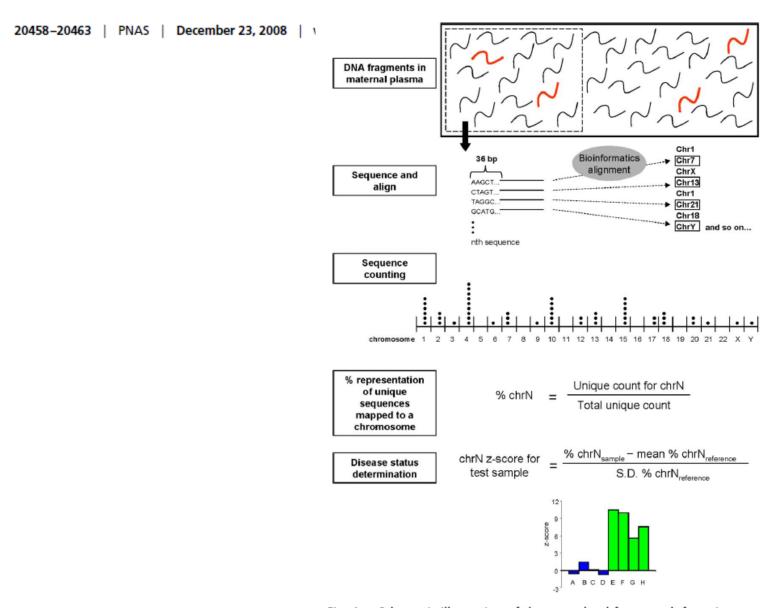
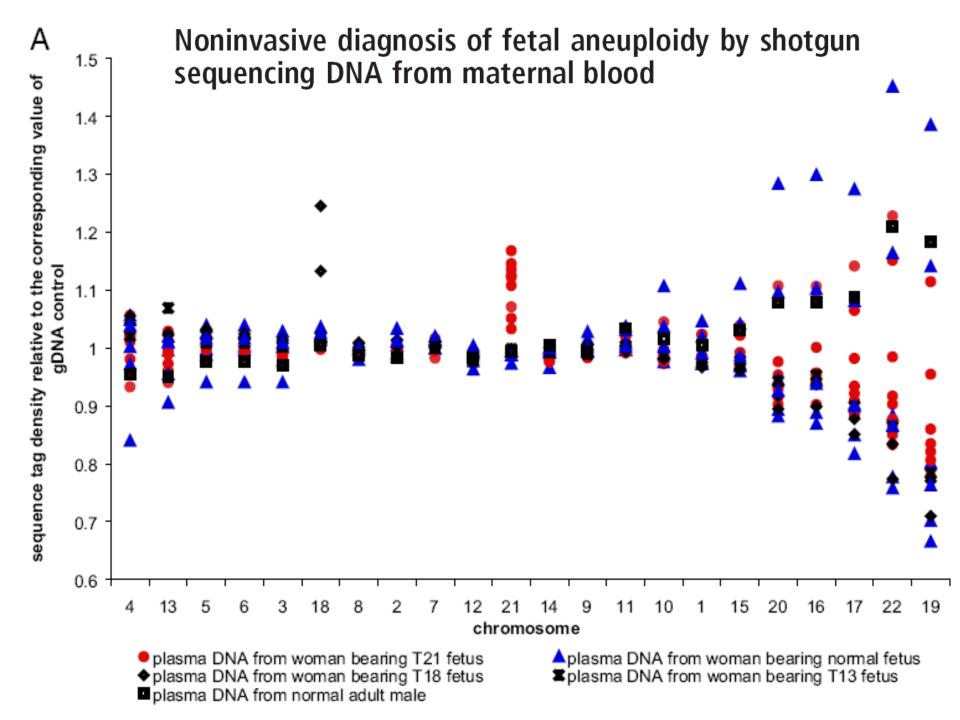
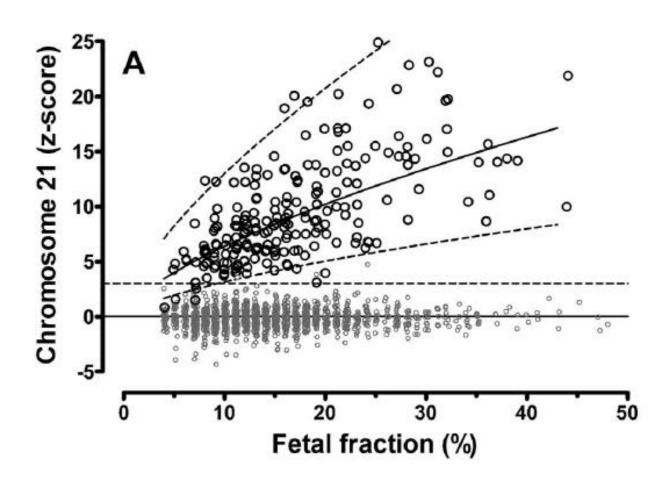



Fig. 1. Schematic illustration of the procedural framework for using mas-

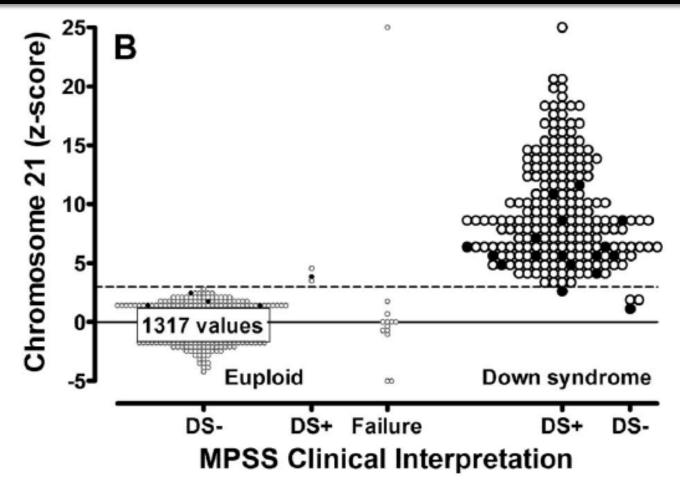
ORIGINAL RESEARCH ARTICLE

©American College of Medical Genetics and Genomics **Open**

DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study


Glenn E. Palomaki, PhD¹, Cosmin Deciu, MS², Edward M. Kloza, MS¹, Geralyn M. Lambert-Messerlian, PhD¹, James E. Haddow, MD¹, Louis M. Neveux, BA¹, Mathias Ehrich, MD³, Dirk van den Boom, PhD³, Allan T. Bombard MD, MBA²-⁴, Wayne W. Grody, MD, PhD⁵-7, Stanley F. Nelson, MD⁵,7,8 and Jacob A. Canick, PhD¹

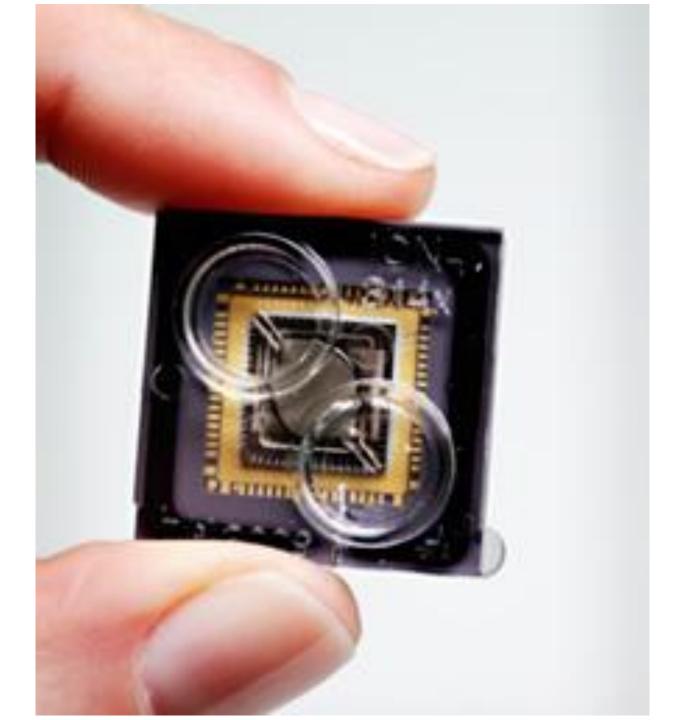
certified university laboratory. **Results:** Down syndrome detection rate was 98.6% (209/212), the false-positive rate was 0.20% (3/1471), and the testing failed in 13 pregnancies (0.8%); all were euploid. Before

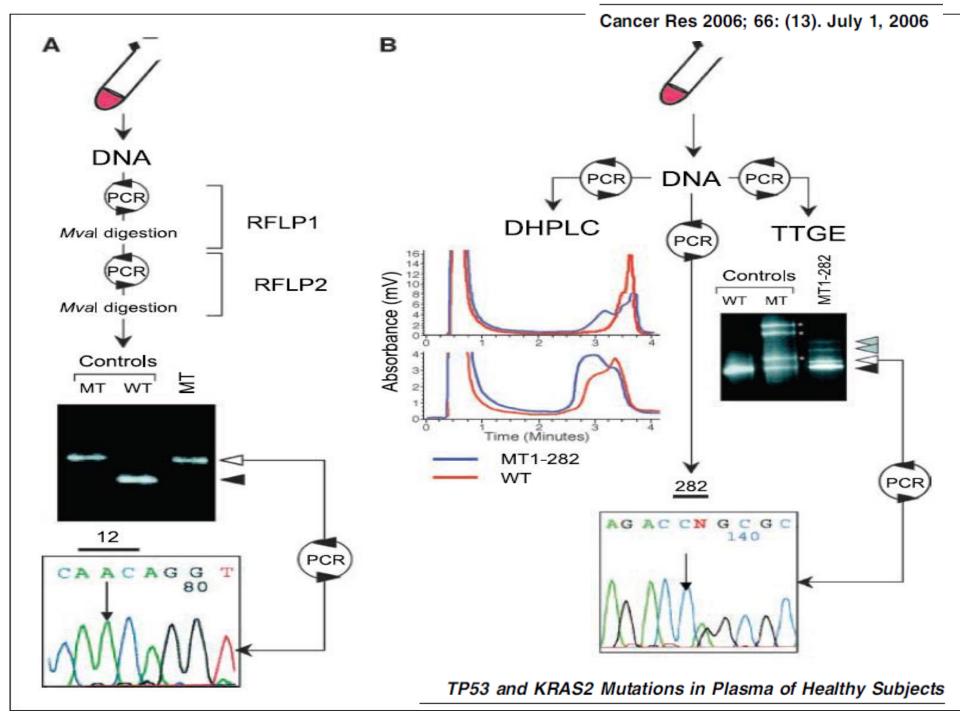

 Table 1 Clinical sites enrolled in the study, along with related enrollment and outcome information

			Singleton pregnancy			
Enrollment site	Location	Clinical investigator	Down syndrome	Normal karyotype	Other	Patients enrolled
North York General Hospital	Toronto, Canada	Wendy S. Meschino, MD	41	651	86	778
Istituto G. Gaslini	Genoa, Italy	Pierangela De Biasio, MD	27	492	35	554
Hospital Clinic Barcelona	Barcelona, Spain	Antoni Borrell, MD, PhD	24	291	44	359
Centrum Lekarske Genetiky	Ceske Budejovice, Czech Republic	David Cutka, MD	14	362	19	395
Hospital Italiano	Buenos Aires, Argentina	Lucas Otaño, MD, PhD	13	68	14	95
Dalhousie University	Halifax, Canada	Michiel Van den Hof, MD	12	115	18	145
Rotunda Hospital	Dublin, Ireland	Fergal Malone, MD	12	70	12	94
Semmelweis University	Budapest, Hungary	Csaba Papp, MD, PhD	10	64	9	83
IMALAB s.r.o. Medical Laboratories	Zlin, Czech Republic	Jaroslav Loucky, RNDr	9	238	8	255
CEMIC	Buenos Aires, Argentina	Maria Laura Igarzabal, MD	8	224	49	281
University of Iowa	Iowa City, IA	Kristi Borowski, MD	8	135	30	173
Women & Infants Hospital	Providence, RI	Barbara O'Brien, MD	6	99	21	126
University of Pécs	Pécs, Hungary	Béla Veszprémi, MD, PhD	4	172	31	207
University of Alabama at Birmingham	Birmingham, AL	Joseph Biggio, MD	4	169	20	193
Rambam Medical Center	Haifa, Israel	Zeev Weiner, MD	4	133	10	147
Cedars Sinai PDC	Los Angeles, CA	John Williams, MD	3	192	28	223
Northwestern University	Chicago, IL	Jeffrey Dungan, MD	3	88	11	102
Henry Ford Hospital	Detroit, MI	Jacquelyn Roberson, MD	3	74	14	91
University of Virginia	Charlottesville, VA	Devereux N. Saller, Jr, MD	3	21	8	32
University of British Columbia	Vancouver, Canada	Sylvie Langlois, MD	2	67	14	83
Intermountain Healthcare	Salt Lake City, UT	Nancy Rose, MD	2	67	9	78
Brigham and Women's Hospital	Boston, MA	Louise Wilkins-Haug, MD	2	21	8	31
Baylor College of Medicine	Houston, TX	Anthony Johnson, DO	2	20	0	22
Yale University	New Haven, CT	Maurice J. Mahoney, MD, JD	1	31	9	41
New Beginnings Perinatal Consultants	Providence, RI	Marshall Carpenter, MD	1	7	4	12
University of Calgary	Calgary, Canada	Jo-Ann Johnson, MD	0	52	5	57
Royal North Shore Hospital	Sydney, Australia	Vitomir Tasevski, PhD	0	7	0	7
All			218	3,930	516	4,664

DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study

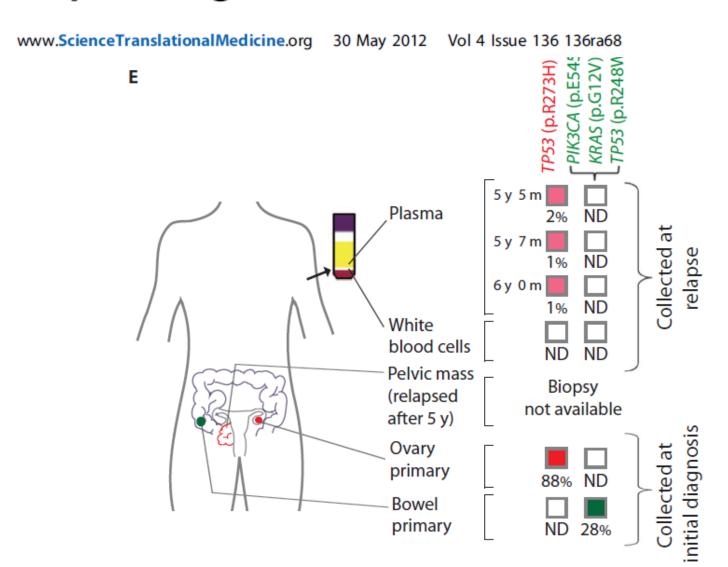
DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study

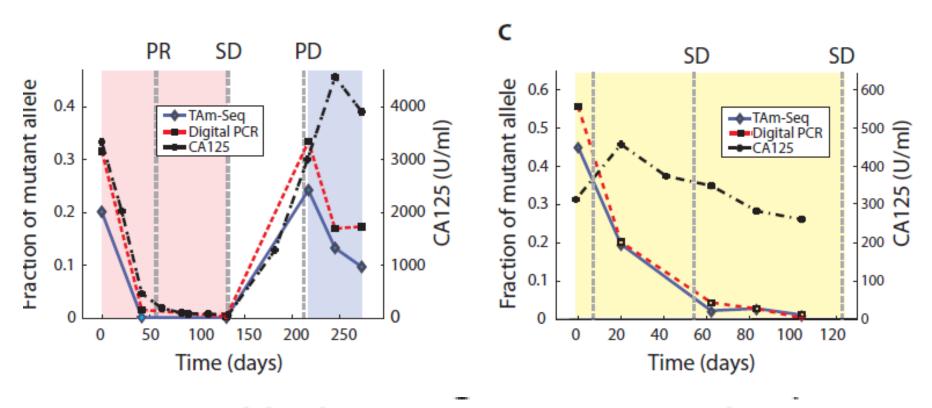



Abordagem SNP/mRNA = simples, barata, adaptável a rotina de laboratórios pequenos (sequenciamento de pequenos fragmentos, e não do genoma completo)

IMT-USP (Ion Torrent – Life Technologies)

- Escala
- Simplicidade
- 个 Acurácia
- 个 Rendimento
- ↓ Tempo
- ↓ Preço




Table 2.					
Codon	Mutation classification*	Mutation	Amino acid change	Cancer site	Tim
(A) Mutations	detected in CFDNA of subjects who	subsequently devel	oped cancer		
KRAS2					
12		GGT>GTT	Gly>Val	Bladder	
12		GGT>GTT	Gly>Val	Bladder	
12		GGT>GTT	Gly>Val	Bladder	
12		GGT>GTT	Gly>Val	Bladder	
12		GGT>GAT	Gly>Asp	Bladder	
12		GGT>GTT	Gly>Val	UADT	
TP53					
175	MT1	CGC>TGC	Arg>Cys	Lung	
179	МТ2	CAT>CCT	His>Pro	Bladder	
181	MT1	CGC>CAC	Arg>His	Lung	
196	МТ2	CGA>CAA	Arg>Gln	Leukemia	
207	МТ2	GAT>GGT	Asp>Gly	Bladder	
216	МТ3	GTG>GTA	Val>Val		
262	МТ2	GGT>AGT	Gly>Ser	Bladder	
271	МТ2	GAG>GGG	Glu>Gly	Bladder	
282	MT1	CGG>CAG	Arg>Glu	Bladder	
324	МТ2	GAT>GGT	Asp>Gly	Bladder	
IN4 (13051)	MT3	G>C	None	Bladder	
(B) Mutations	detected in CFDNA of control subje	cts			
KRAS2	•				
12		GGT>GTT	Gly>Val		
12		GGT>GTT	Gly>Val		
12		GGT>GTT	Gly>Val		
12		GGT>AGT	Gly>Ser		
12		GGT>GTT	Gly>Val		

Noninvasive Identification and Monitoring of Cancer Mutations by Targeted Deep Sequencing of Plasma DNA

Noninvasive Identification and Monitoring of Cancer Mutations by Targeted Deep Sequencing of Plasma DNA

www.ScienceTranslationalMedicine.org 30 May 2012 Vol 4 Issue 136 136ra68

; SD, stable disease; PD, progressive disease.

Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies

Chetan Bettegowda et al. Sci Transl Med 6, 224ra24 (2014);

DOI: 10.1126/scitranslmed.3007094

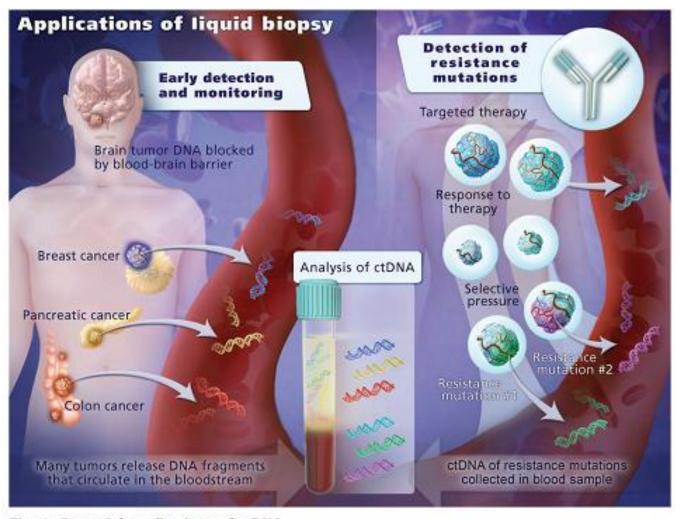
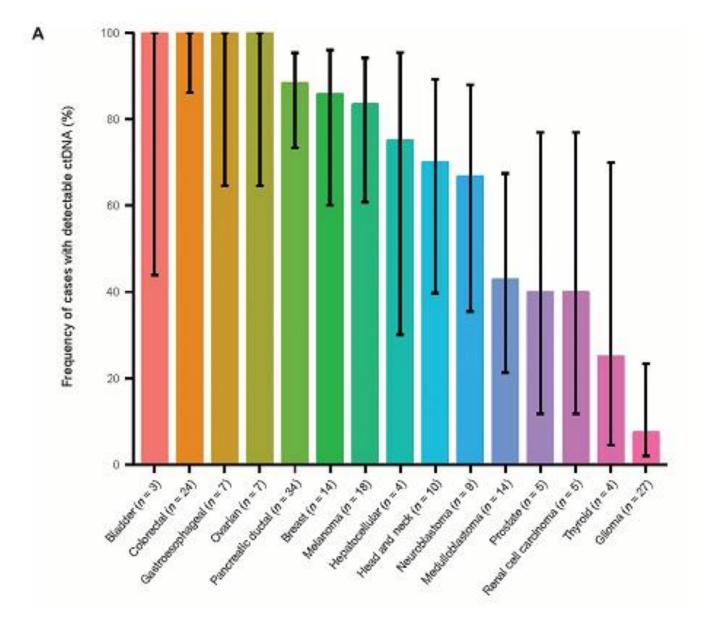



Fig. 1. Potential applications of ctDNA.

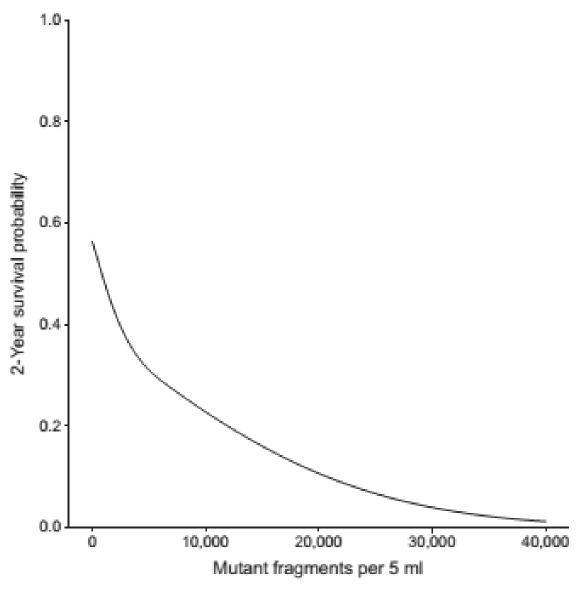


Fig. 5. The relationship between ctDNA concentration (mutant fragments per milliliter) and 2-year survival. The association between surviv-

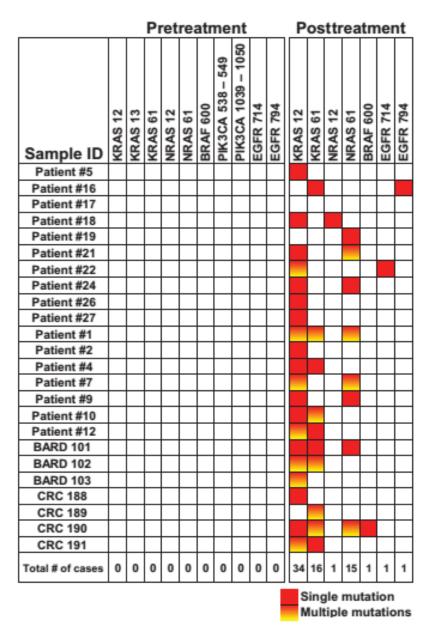


Fig. 6. Heat map of acquired resistance mutations to EGFR blockade in ctDNA from patients with metastatic CRC.

Universal noninvasive detection of solid organ transplant rejection

Thomas M. Snyder^{a,b}, Kiran K. Khush^c, Hannah A. Valantine^{c,1}, and Stephen R. Quake^{a,b,1}

^aThe Howard Hughes Medical Institute and ^bDepartments of Applied Physics and Bioengineering, Stanford University, Stanford, CA 94305; and ^cDivision of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305

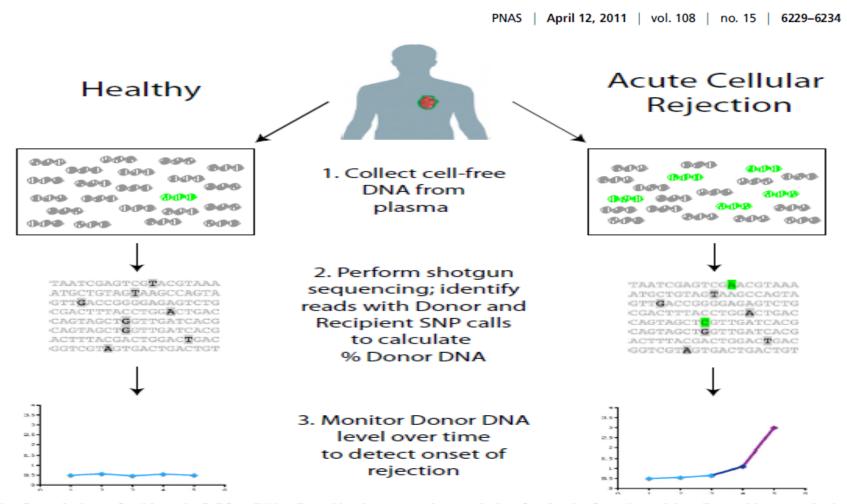


Fig. 1. General scheme for this study. Cell-free DNA collected in plasma contains a majority of molecules from the recipient (in gray) but may also include some from the transplanted organ (green). Due to increased cell death in the organ during a rejection episode, more donor molecules are expected to be present in the blood at these times. Shotgun sequencing of the purified DNA allows for counting recipient versus donor molecules by looking at single nucleotide polymorphisms (SNPs) that vary between donor and recipient. Very high levels of donor DNA, particularly changes from past measurements, will indicate the onset of rejection.

Ácidos Nucleicos Fetais - ANEUPLOIDIAS

- Prof. Dr. Mário Burlachini Departamento de Ginecologia e Obstetrícia da Fac.de Medicina da Universidade de São Paulo.
- Renata Romão Doutoranda, Departamento de Ginecologia e Obstetrícia da Fac. de Medicina da Universidade de São Paulo.

Ácidos Nucleicos Fetais - RhD

- Prof. Dr. Adolfo Liao- Departamento de Ginecologia e Obstetrícia da Fac.de Medicina da Universidade de São Paulo.
- Karen Chinoca- Mestranda, Departamento de Ginecologia e Obstetrícia da Fac.de Medicina da Universidade de São Paulo.

DNA Tumoral Circulante

- Cristina Mendes de Oliveira, Pós-Doutoranda, Lab. De Virologia do inst. De Medicina Tropical Da Universidade de São Paulo.
- Cristiane Centrone, Mestranda, Lab. De Virologia do inst. De Medicina Tropical Da Universidade de São Paulo.

dudilevi@usp.br