

Análises Forenses de Vestígios Biológicos

Kelly Ribas Lobato, MSc.

klobato@igp.sc.gov.br

Patrocínio:

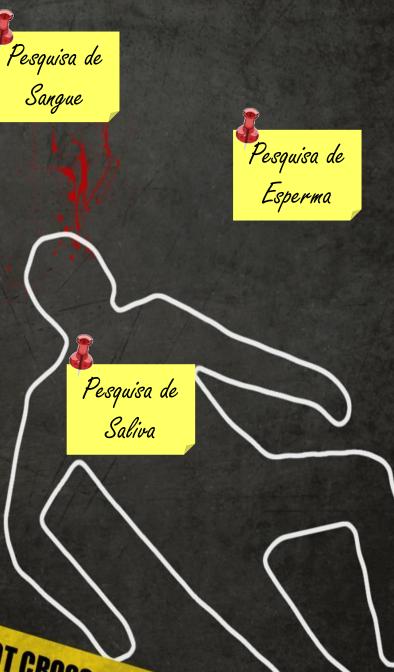
Apoio:

Local: Auditório do Bloco H do Centro de Ciências da Saúde da Universidade Federal de Santa Catarina (UFSC) Informações e Inscrições:

www.seac.paginas.ufsc.br

Objetivo:

Apresentar as metodologias empregadas no Setor de Vestígios Biológicos do Instituto Geral de Perícias de Santa Catarina, ressaltando a importância destes vestígios e as possibilidades do setor.



Pesquisa de Pelos

ME SCENE DO NOT CROSS

Quantificação Genética

CRIME SCENE DO NOT CROSS


Art. 6º. Logo que tiver conhecimento da prática da infração penal, a autoridade policial deverá.

I – dirigir-se ao local, providenciando para que **não se alterem o Estado e conservação das coisas**, até a chegada dos peritos criminais;

II – apreender os objetos que tiverem relação com o fato,
 após liberados pelos peritos criminais;

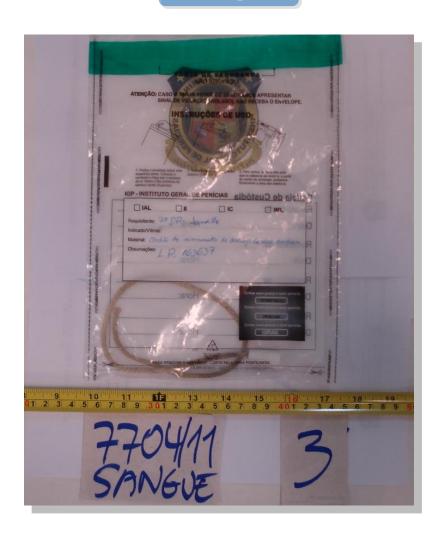
 III – Colher todas as provas que servirem para o esclarecimento do fato e suas circunstâncias;

Art. 158 - Quando a infração deixar vestígios, será indispensável o exame de corpo de delito, direto ou indireto, não podendo suprilo a confissão do acusado.

CINCO FINALIDADESDO LEVANTAMENTO DE LOCAIS DE CRIME:

- 1. Constatar se efetivamente houve, ou não, uma infração penal
- 2. Qualificação da infração penal
- 3. Coleta dos elementos que levem à identificação dos criminosos
- 4. Perpetuação dos indícios materiais suscetíveis de serem utilizados como prova
- 5. Legalização do indício

Vestígios Biológicos



Autoria

Materialidade

Vestígio

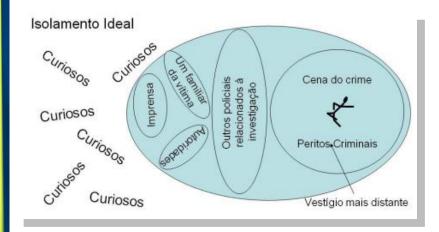
Evidência

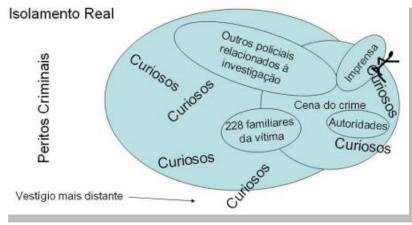
4 Pontos críticos na coleta e análise dos vestígios biológicos:

Isolamento e preservação do local de crime

Atuação do Perito Criminal no local de crime

Coleta criteriosa do Perito Médico-legista


Tratamento das amostras pelo Peritos Criminais Bioquímicos



Isolamento e preservação do local de crime

Art. 169. Para o efeito de exame do local onde houver sido praticada a infração, a autoridade providenciará imediatamente para que não se altere o estado das coisas até a chegada dos peritos, que poderão instruir seus laudos com fotografias, desenhos ou esquemas elucidativos.

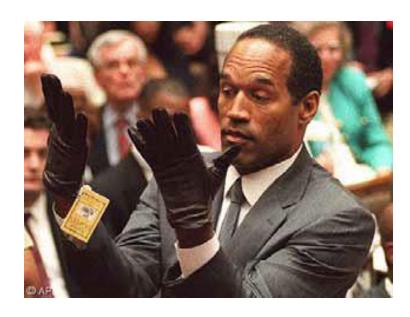
Parágrafo único – Os peritos registrarão, no laudo, as alterações do estado das coisas e discutirão, no relatório, as consequências dessas alterações na dinâmica dos fatos.

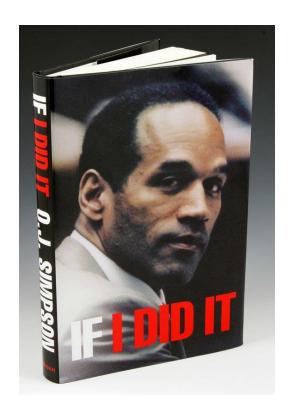
Polícia Militar

Polícia Civil

Perito Criminal

Perito Médico-legista


Manter a integridade física da amostra e credibilidade a análise


robustez do Laudo Pericial valor legal

Atuação do Perito Criminal no local de crime

- habilidade e experiência no reconhecimento da importância de determinada evidência
- correto manuseio e coleta da evidência

Ex-jogador de futebol americano O. J. Simpson

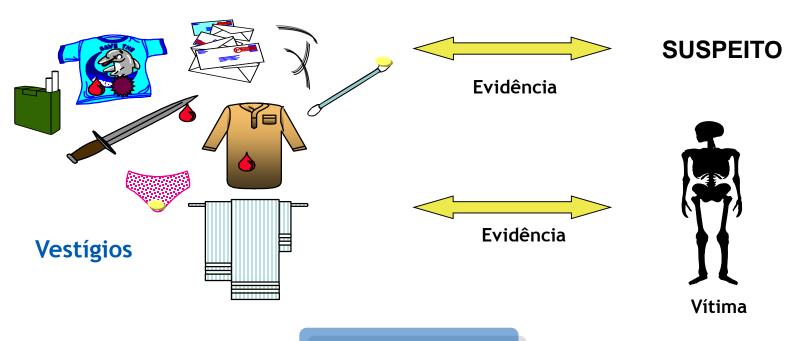
Coleta criteriosa do Perito Médico-legista

- habilidade e experiência no reconhecimento da importância de determinada evidência
- correto manuseio e coleta da evidência

Violência Sexual

Mordidas lambidas

Conjunção carnal



Defesa

Pelos pubianos

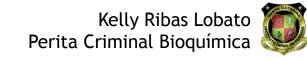
Bioquímica Forense

Pesquisa de Pelos

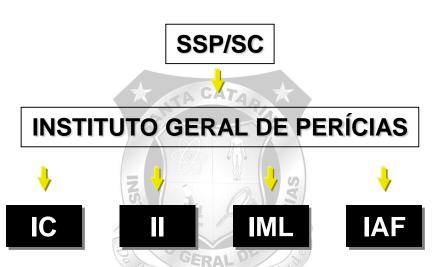
Pesquisa de Saliva

Vestígios biológicos de interesse forense

Table 1. DNA content of biological samples ^a				
Type of sample	Amount of DNA			
Liquid blood	20,000-40,000 ng/mL			
stain	250-500 ng/cm ²			
Liquid semen	150,000-300,000 ng/mL			
Postcoital vaginal swab	10-3,000 ng/swab			
Hair (with root)				
Plucked	1-750 ng/root			
Shed	1-10 ng/root			
Liquid saliva	1,000-10,000 ng/mL			
Oral swab	100-1500 ng/swab			
Urine	1-20 ng/mL			
Bone	3-10 ng/mg			
Tissue	50-500 ng/mg			
^a Quantity of DNA recovered from evidentiary samples is significantly affected by environmental factors.				

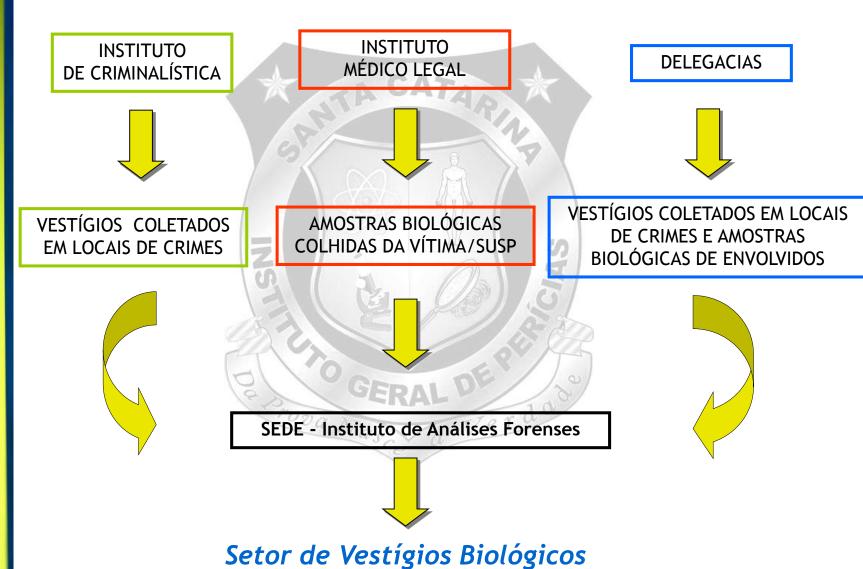

II- IGP/SC

28 e 29 de agosto de 2014


Local: Auditório do Bloco H do Centro de Ciências da Saúde da Universidade Federal de Santa Catarina (UFSC)

Informações e Inscrições:

www.seac.paginas.ufsc.br

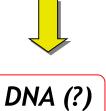

Na prática...

Instituto de Análises Forenses

- Setor de Química Forense
- Setor de Toxicologia Forense
- Setor de Vestígios Biológicos
 - Setor de Genética Forense

Setor de Vestígios Biológicos

Triagem e identificação



DNA Forense



Método Comparativo

Amostra Questionada

Amostra Referência

Óbióo: Coleta de sangue; Trestritoutde Médissen Liegahto Matestian pahas D(Rerilloxio filoigil)

Vestígios biológicos de interesse forense

Exemplo:

Luva foi utilizada pelo agressor?

✓ Coleta e quantificação genética → VB

√ Individualização DNA

Sangue? Sangue humano? Sangue da vítima?

√ Triagem e identificação → VB

√ Individualização DNA

Identificação de Fluidos biológicos -> SOROLOGIA FORENSE

RÁPIDOS

BAIXO CUSTO

CONTEXTUALIZAÇÃO

Fluidos Biológicos

Específicos

Composição

Abundantes

Confirmatórios

Preliminares

Forensic Science International 188 (2009) 1-17

Contents lists available at ScienceDirect

Forensic Science International

Review

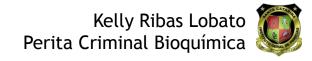
Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene

Kelly Virkler, Igor K. Lednev*

Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, United States

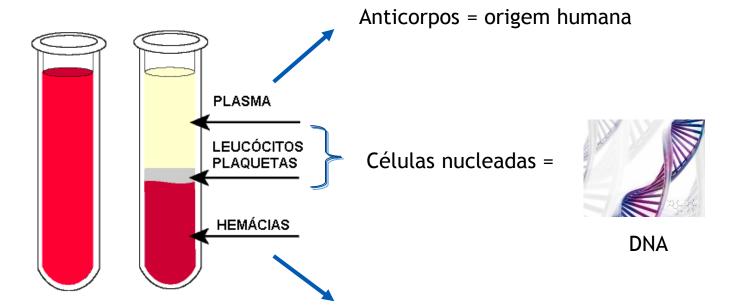
Table 1 Composition of body fluids.

Blood [17]	Semen [17]	Saliva [17]	Vaginal fluid [14,18]	Urine [10,17]	Sweat [8,17]
-Hemoglobin -Fibrinogen -Erythrocytes -Albumin -Glucose -Immunoglobulins	-Acid phosphatase -Prostate-specific antigen -Spermatozoa -Choline -Spermine -Semenogelin -Zinc -Citric acid -Lactic acid -Fructose -Urea -Ascorbic acid -Immunoglobulins	-Amylase -Lysozyme -Mucin -Buccal epithelial cells -Thiocyanate -Potassium -Bicarbonate -Phosphorus -Glucose -Immunoglobulins	-Acid phosphatase -Lactic acid -Citric acid -Urea -Vaginal peptidase -Glycogenated epithelial cells -Acetic acid -Pyridine -Squalene -Immunoglobulins	-Urea -Creatinine -Uric acid -Chlorine -Tamm-Horsfall glycoprotein	-Urea -Lactic acid -Chloride -Sodium -Potassium -Immunoglobulins



28 e 29 de agosto de 2014

Local: Auditório do Bloco H do Centro de Ciências da Saúde da Universidade Federal de Santa Catarina (UFSC)


Informações e Inscrições:

www.seac.paginas.ufsc.br

- ✓ Considerado o principal vestígio biológico de interesse forense;
- ✓ Tecido formado por células e uma matriz líquida denominada plasma.

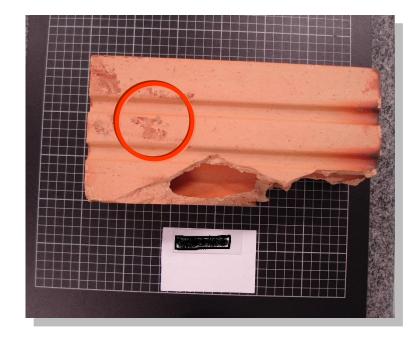
Abundantes e persistentes = presença

- √ Quesitos formulados pela Autoridade:
 - 1. Qual a natureza do material enviado para análise?
 - 2. As manchas observadas são sangue?
 - 3. São de origem humana?
 - 4. E do suspeito/vítima?

AMOSTRA

- ✓ **Análise visual**: detectar possíveis manchas a serem periciadas
- ✓ Teste Preliminares (orientação): bastante sensíveis e pouco específicos
- ✓ Teste Confirmatório: bastante específico (presença)
- ✓ Testes de Origem: específicos para sangue humano

Laudo Pericial



1°) Análise dos vestígios

1°) Análise dos vestígios

1°) Análise dos vestígios

1°) Análise dos vestígios

1°) Análise dos vestígios

1°) Análise dos vestígios

Análise visual - descrição - fotodocumentação

Instrumentos de visualização

Lupa de bancada

Iluminação de bancada (luz branca)

Estereomicroscópio (aumento de até 100x)

2°) Métodos para visualização/testes preliminares

Fontes alternativas de luz

Reagente de Luminol

Proteínas

Emissão de energia

Heme

Fotoluminescência

Quimiluminescência

2°) Métodos para visualização/testes preliminares

Table 4: Comparison of the tested FLS in recent literature in term of wavelength and detectable stains reported

FLS	Wavelength (nm)	Detectable Stains Reported	
TracER (Laser) [3]	532 (Green laser beam)	Semen, Saliva, Urine	
Spectra-Physics® Reveal TM (Laser) [9]	532 (Green laser beam) Semen, Saliva, Urine		
Poliray TM [13,20]	415-610 (mounting interference filters)	Blood, Semen, Urine	
Polilight® PL500 [4]	Adjustable from UV, 415-650nm and white light	Blood, Semen, Saliva, Urine	
Lumatec Superlite 400 [9]	Adjustable from 320-700	Blood, Semen, Saliva, Urine	
Wood's lamp [19]	320-400 (Long UV)	Semen (doubtful)	
Bluemaxx BM500 [14,21]	450 (Blue)	Semen, Saliva, Urine	
Bluemaxx Mini [21]	450 (Blue)	Semen	
Evident Product CE [21]	365 (Long UV)	Semen, Saliva, Urine	
Mineralight® [21]	254 (Short UV)	Semen, Saliva, Urine	
High Intensity LED [13]	Variety of wavelength depends on the	Blood, Semen (Urine was detectable	
	LED used	by Luxeon TM Star V LED)	

2°) Métodos para visualização/testes preliminares

Fontes alternativas de luz

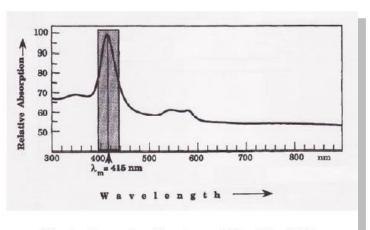
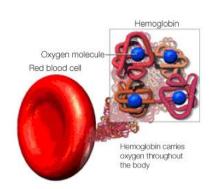



Fig. 1: Absorption Spectrum of Dry Blood [6]

415nm

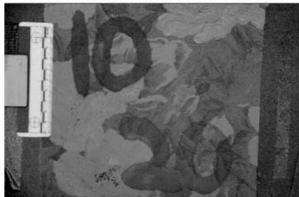
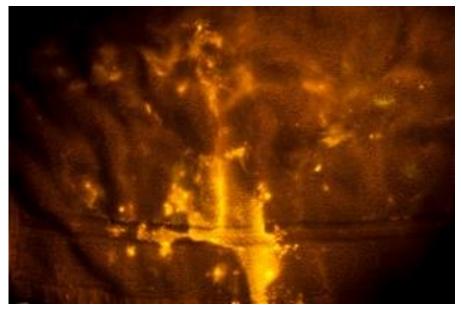
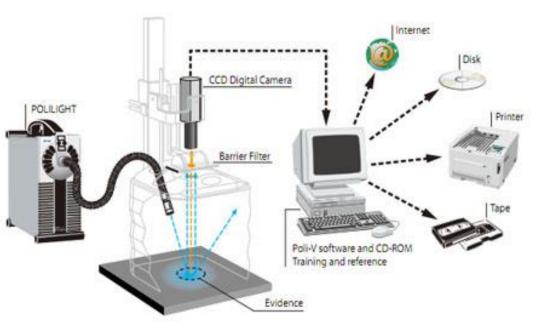



Figure 3: Images of 10-fold and 20-fold diluted blood on a floral substrate. Top image was taken at 415 nm. Lower image was obtained by performing background correction according to equation 2. Both images have been adjusted for optimal brightness and contrast.


Fontes alternativas de luz

Fontes alternativas de luz

White Light Image

Fluorescent Image

White Light Image

Absorption Image

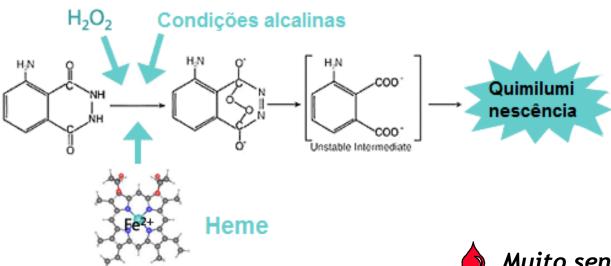
White Light Image

Fluorescent Image

Fontes alternativas de luz

FLS	Wavelength (nm) / Detection methods	Surfaces	Maximum visible dilution reported
Polilight®	Background Correction [11,12]	2	1/1600
	415nm [4]	2	1/1000
		3-18,20-26	_
		19	1
Lumatec Superlite 400	415nm [9]	1	1/10
		28	1/10
		29	1/10
		30	1/100
		31	1/10
		32	1/1
		25	1/1
		33	1/1
		34	1/100
High Intensity LED	370-480nm [13]	44	nv2
Poliray TM	450nm [13]	44	nv2
IR	>930nm [7]	6	1/4
		35	1
		36	1/4
		37	1/4
		38	1/4
		39	1/4
		40	1
		41	1/4
		42	1/8
		43	1/4

Code: Surfaces numbers referred to the surfaces numbered in Table 5


Bold dilutions mean strong or clear detection.

Non-bold dilutions mean weak detection.
"-" indicates not stated in literature

nv2 means neat stains visible on first day but not visible on second day

2°) Métodos para visualização/testes preliminares

LUMINOL

Manchas não visíveis

Muito sensível

Falsos positivos

Dinâmica do crime

Quantificação

2°) Métodos para visualização/testes preliminares

Luminescence 2003;18:193-198

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/bio.723

ORIGINAL RESEARCH

A comprehensive experimental study of industrial, domestic and environmental interferences with the forensic luminol test for blood

J. I. Creamer, 1,2 T. I. Quickenden, 1* M. V. Apanah, 1 K. A. Kerr 1 and P. Robertson 1

Luminescence 2005; 20: 411-413

Published online 20 June 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/bio.865

ORIGINAL RESEARCH

Attempted cleaning of bloodstains and its effect on the forensic luminol test

Jonathan I. Creamer,^{1,2} Terence I. Quickenden,¹* Leah B. Crichton,¹ Patrick Robertson¹ and Rasha A. Ruhayel¹

¹Chemistry, M313, School of Biomedical and Chemical Sciences, Centre for Forensic Science, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

²Centre for Forensic Science, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Received 3 January 2005; revised 11 March 2005; accepted 21 March 2005

¹Chemistry, School of Biomedical and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

²Centre for Forensic Science, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

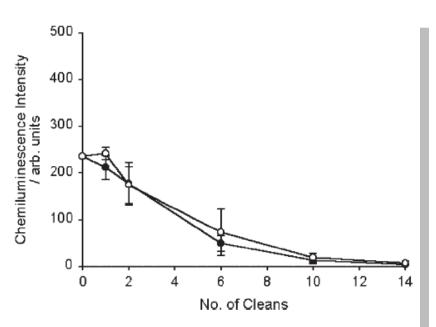
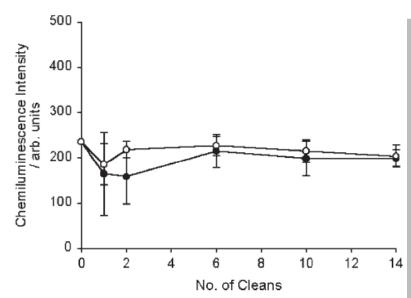


Table 2. Spectral measurements showing all substances analysed for interference with the luminol test for blood detection tgl . Errors shown are 95% confidence intervals in the mean values


Interfering substance	Mean peak wavelength shift from haemoglobin (nm)	Replicate peak intensities (arbitrary units)	Mean intensity (% of haemoglobin value)
Fruit and vegetables			
Turnip (pulp)	3 ± 4	134, 166, 170, 230	74 ± 35
Parsnip (pulp)	8 ± 5	106, 112, 143, 170	56 ± 23
Horseradish (pulp)	3±4	33, 40, 60, 61	20 ± 12
Turnip (smear)	13 ± 6	28, 36, 37, 42	15 ± 5
Carrot (pulp)	5 ± 4	20, 22, 25, 25	10 ± 2
Onion (pulp)	1 ± 4	8, 10, 17, 21	6 ± 4
Social interferences			
Cigarette ash	14 ± 6	12, 22, 22, 24	8 ± 4
Red pen ink (Biro®)	13 ± 5	15, 19, 23, 24	8 ± 3
Cigarette smoke (from automobile)	11 ± 9	12, 14, 14, 15	6 ± 1
Cigarette smoke (from smoking room)	11 ± 14	12, 12, 14, 15	5.5 ± 2
Surfaces, coatings and cleaners		,,_	
Copper metal	2 ± 10	239, 254, 255, 255	106 ± 10
Enamel paint (Dulux®)	9±4	227, 235, 238, 245	100 ± 10
125 g/L NaClO _(ag)	9±4	174, 179, 210, 230	84 ± 22
Dark green spray paint (Taubman®)	22 ± 3	149, 180, 183, 255	81 ± 34
Wooden-furniture polish (Goddard's*)	11 ±23	44, 47, 47, 53	20 ± 4
Blu Tak (Bostik®)	12 ± 17	11, 23, 34, 34	11 ± 8
Laminated chipboard	1 ± 27	22, 26, 26, 30	11 ± 3
Aluminium metal	3 ± 15	17, 24, 29, 29	10 ± 5
Chipboard	8 ± 10	13, 14, 18, 25	7.5 ± 4
Computer cover	9 ± 22	15, 16, 18, 20	7 ± 2
Terracotta tile	9 ± 2	9, 13, 15, 17	5.5 ± 2.5
Automobiles		,, ,, ,, ,,	
Roof lining			
1992 Ford Laser®	13 ± 7	45, 45, 45, 70	22 ± 11
1982 Mitsubishi Sigma®	6±17	7, 11, 11, 23	5.5 ± 4.5
1986 Mitsubishi Magna®	10 ± 16	9, 12, 12, 14	5 ± 2
Door lining			
1986 Mitsubishi Magna®	16 ± 19	12, 12, 13, 13	5 ± 1
Seat fabric			
1986 Mitsubishi Magna®	19 ± 15	8, 12, 12, 16	5 ± 3
1987 Mitsubishi Magna® (sedan)	13 ± 12	7.5, 11, 11, 13	5 ± 2.5
Toiletries			
Hair wax (Wella®)	13 ± 9	8, 17, 18, 19	6.5 ± 4
Lipstick			
Black Opal® Caramel Crème	13 ± 17	13, 17, 22, 22	7.5 ± 3.5
Black Opal® Ebony White	10 ± 22	7. 12. 13. 14	5 ± 2.5

2°) Métodos para visualização/testes preliminares

LUMINOL

Figure 1. The effect of cleaning bloodstains on the resultant chemiluminescence from the luminol test. \bullet , wet blood and water; \bigcirc , dry blood and water.

Figure 2. The effect of cleaning bloodstains on the resultant chemiluminescence from the luminol test. \bullet , wet blood and commercial bleach; \bigcirc , dry blood and commercial bleach.

Exemplos do uso do luminol:

No laboratório:

Análise visual Depende do histórico

No Local de Crime:

Análise visual Dinâmica do crime

2006-06-09

The forensic luminol test for blood: unwanted interference and the effect on subsequent analysis

Anders Nilsson

Project Microbial Biotechnology (5p), Linköping University, the Swedish National Laboratory of Forensic Science (SKL)

Appendix A: Visualization of blood using preparations of luminol and fluorescein

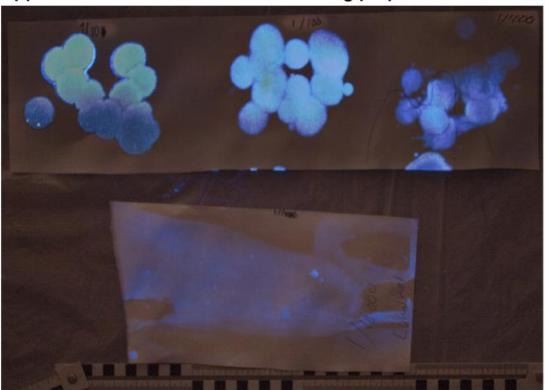
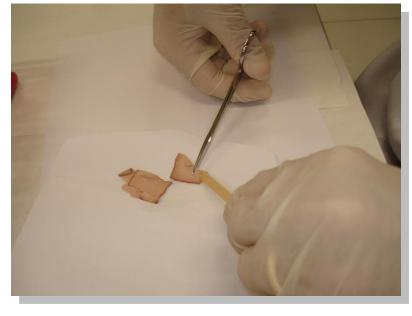
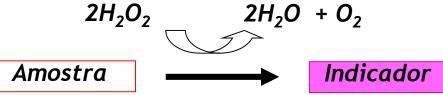



Fig: Visualization of bovine blood using a preparation of luminol (Krim. Teknisk Materiel AB). The upper half shows blood on plastic carpet diluted (from left to right) 1:10, 1:100 and 1:1000. The lower half shows blood diluted 1:10 000 on filter paper.

3°) Coleta

- **Experiência do perito**
- Tipo de suporte
- histórico do caso
- Quantidade de material


4°) Testes Preliminares

Indicador

Testes de Cor

+

Detectam a hemoglobina

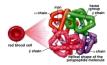
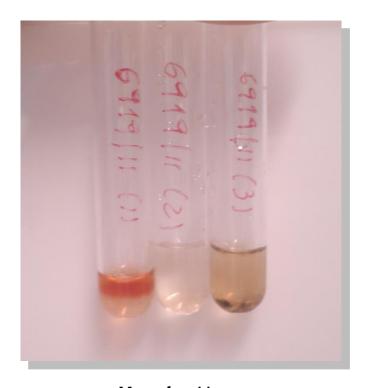
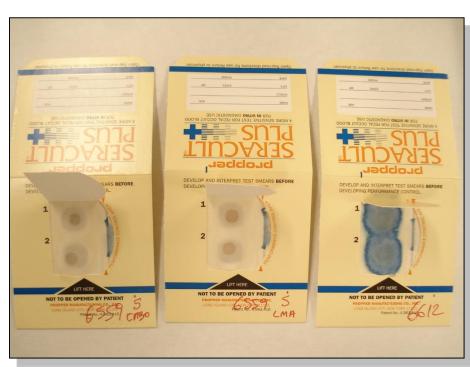



Table 1. Summary of presumptive tests for blood and the applicability in fish research. Class 1: known carcinogens to humans; Class 2A: probable carcinogens to humans; Class 2B: possible carcinogens to humans; TMB: tetramethylbenzidine; NA: not available


Test	Sensitivity	Price (\$CAD)	Carcinogen	Tested on fish	Potential field use	Potential lab use	Rationale
Benzidine	1:100000	NA	Yes	No	None	None	Class I carcinogen (IARC 1987)
o-Toluidine	1:100000	\$32.95/kit	Yes	No	None	None	Class 2A carcinogen (IARC 1972)
Phenolphthalein	1:10000	\$34.00/kit	Possible	No	Medium	High	Class 2B carcinogen (IARC 2000)
Leuchomalachite green	1:10000	NA	Yes	Yes	None	None	Hazardous to fish and humans (Fessard et al. 1999)
TMB	1:10000	\$36.00/kit	No	No	Low	Low	Hemastix® contain the reagent
Hemastix [®]	1:100000	\$35.00/50 strips	No	No	High	High	Easy to use; test strips are pre-treated with reagent
Hemident™	1:10000	\$16.65/10 tests	No	No	High	High	Easy to use; self contained reaction
Fluorescein	1:100,000	\$36.50/250 ml	No	Yes	High	High	Has already been tested and used on fish for injury detection
Luminol	1:1,000,000	\$18.25/236 ml	No	No	Low	Low	Reaction only lasts 30 s; more applicable methods available
Bluestar [©]	1:100000	\$89.00/500 ml	No	No	Medium	High	Easier to use than luminol; reac- tion lasts longer and is brighter

4°) Testes Preliminares

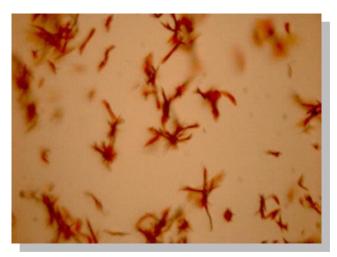
Kastle-Meyer

Ácido guáiaco

5°) Testes Confirmatórios

Testes microquímicos

Detectam a hemoglobina



Princípio:

São métodos microquímicos baseados na produção de cristais característicos de sangue

Cristais de Teichmann

Cristais de Takayama

Cristais de derivados do heme insolúveis em água

5°) Testes Confirmatórios

Cristais de Takayama


Cristais de Hemina (Cloreto, Brometo ou lodeto de Ferroprotoporfirina) Cristais de hemocromogênio

6°) Testes de Origem

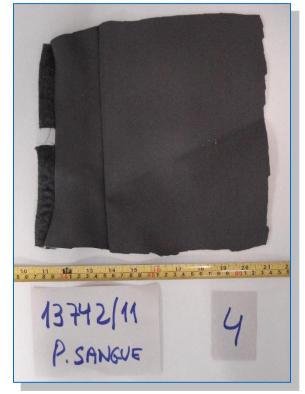
- ✓ Pouco sensíveis → com possibilidade de falsos negativos;
- ✓ Altamente específicos → sem possibilidade de falsos positivos

Testes Imunológicos

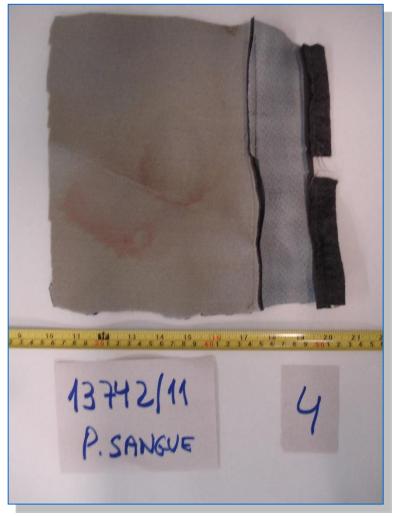
Inibição da Hemaglutinação

Imunocromatografia

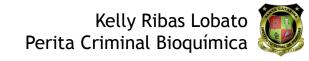
Resultados (+) -> Amostra contém sangue de origem humana


CASO PESQUISA DE SANGUE

Caso - IC Capital


Suspeita: Ocultação de cadáver

CASO PESQUISA DE SANGUE



28 e 29 de agosto de 2014

Local: Auditório do Bloco H do Centro de Ciências da Saúde da Universidade Federal de Santa Catarina (UFSC)

Informações e Inscrições:

www.seac.paginas.ufsc.br

Violência Sexual

Crianças e adolescentes: ato sexual, de natureza heterossexual ou homossexual, cujo agressor está em estágio de desenvolvimento psicossexual mais adiantado que a vítima (MS, 2002).

Mulheres: ação que obriga a mulher a manter contato sexual com uso de força, intimidação, coerção, chantagem, suborno, manipulação, ameaça ou qualquer outro mecanismo que anule ou limite a vontade pessoal da vítima (OSHIKATA et al., 2011).

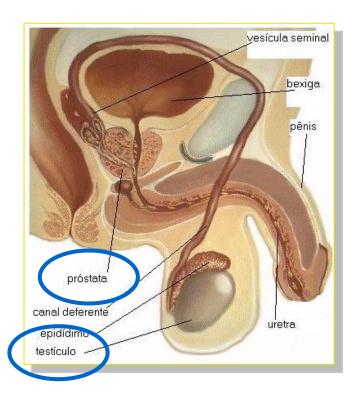
Problemática: subnotificação!

Laços afetivos

Doenças Psiquiátricas

Drogas

Vergonha e estigma


Programas públicos

- Esperma: principal vestígio biológico em casos de crimes sexuais
- Além de caracterizar o contato sexual a pesquisa de esperma tem por objetivo a individualização da evidência biológica para confronto com possíveis suspeitos.

Antígeno Prostático Específico (PSA):

- ausência em tecidos e fluidos femininos;
- níveis normais em: azoospérmicos; oligoospérmicos; vasectomizados.

Espermatozóides:

- Cada ejaculação libera aproximadamente 50-130 milhões de sptz/mL;
- ✓ Permite a identificação (DNA)

TABELA 1. Níveis De PSA em Fluidos Extraprostáticos

FLUIDO	AUTOR	GRUPOS ESTUDADOS	PSA (ng/ml)
Soro de Mulheres	Filella et al (1996)		até 0,5
	Melegos et al (1997)	controles	0-0,019
		com hirsutismo	0-0,579
	Zarghami et al (1997)	durante o ciclo menstrual	0,002-0,004
	Aksoy et al (2002)	durante o ciclo menstrual	0,007-0,035
	Manello et al (1998)	ingerindo contraceptivo	<0,06
	Black et al (2000)	controles	0-0,055
		com câncer de mama	0-8,153
Soro de Crianças até 12 anos	Antoniou et al (2004)	meninos	até 2,768
		meninas	0,287
Urina de mulheres	Breul et al (1997)	controles	0,2-2,00
		ingerindo testosterona	0,2-12,00
	Mannello et al (1998)	controles	0,02-0,15
		com contraceptivo oral	0,09-1,239
	Schmidt (2001)		0,12-1,06
	Obiezu et al (2001)	controles	0,001-0,046
		sídrome de ovário policístico	0,001-10,29
Saliva	Aksoy et al (2002)	durante o ciclo menstrual	0,007-0,029
Leite Materno	Yu et al (1995)		<0,01-350
	Magklara et al (1999)		0-111
Líquido amniótico	Wolff et al 1999		0,003-1,22
	Magklara et 1999		0,01-2,00
Líquido cefalorraquidiano	Melegos et al (1997)	desordens neurológicas	até 0,382
Secreção vaginal	Lawson et al (1998)		0-1,25
-	Macaluso et al (1999)		0,43-0,88

Vários autores dosaram a PSA no esperma. A Tabela 2 relaciona os níveis encontrados.

TABELA 2. Níveis de PSA no fluido seminal

AUTOR	PACIENTES ESTUDADOS (n)	PSA (ng/ml)variação	PSA (ng/ml)média
Senkul et al (2004)	18	0,004 - 2,72 x 10 ⁶	0,7+-0,39x10 ⁶
Shieferstein (1999)	113	0 - 1,8 x 10 ⁶	0,4+-0,3x10 ⁶
Lynne et al (1999)	43	0,009 - 3,0 x 10°	1,29+-0,15x10 ⁶
Wang et al (1998)	22	0,39 - 3 x 10 ⁶	1,29x+- 0.68x106

√ Quesitos formulados pela Autoridade:

- 1. Qual a natureza do material periciado?
- 2. Se existem vestígios de esperma no material?
- 3. É possível identificar o agressor?

GERAL D

SPTZ

Laudo Pericial

PSA

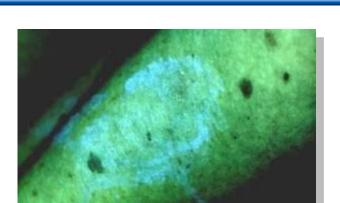
1°) Análise dos vestígios

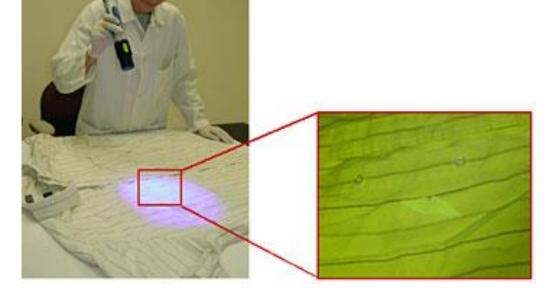
Análise visual - descrição - fotodocumentação

- √ Visual e tátil manchas de coloração branca ou amarelada com superfície áspera ao toque;
- ✓ **Uso de fontes de luz alternativas** o sêmen contém flavinas que emitem fluorescência, quando submetido a luz UV (455nm + filtro laranja).

Malaysian Journal of Forensic Sciences, 2010, Vol 1

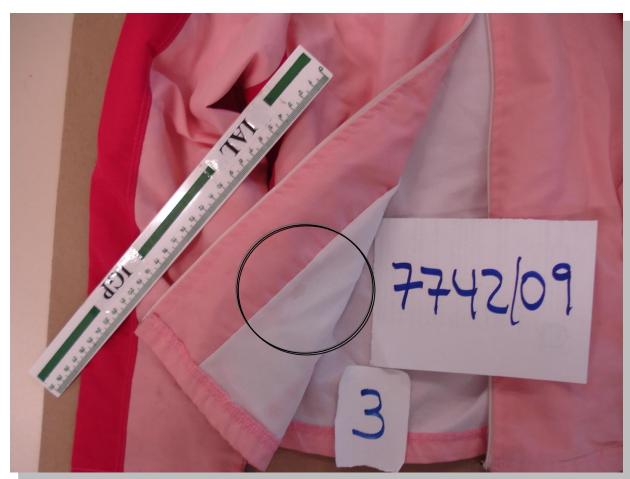
Table 1: Excitation light with appropriate goggles for untreated semen stains detection recommended by Stoilovic [6]


Excitation light	Goggles/Filters	Colour of the observed stain
UV	No goggles needed, but recommended to wear UV safety goggles	Blue
Violet	Yellow goggles	Yellow
Blue	Yellow goggles	Yellow
Green	Orange goggles	Orange
Green-yellow	Red goggles	Red
Green-yellow	Violet filters (425nm)	Black


Table 7: Detectable semen stains on different surfaces reported using FLS

FLS	Wavelength (nm) / Detection methods	Surfaces	Maximum visible dilution reported
Polilight®	UV light [22]	2	1
	450nm + Orange goggles [4]	2,11	1/100
		3-5,10	1
		6-9,12-27	_
Bluemaxx BM500	450nm + Orange goggles [14,21]	2	_
		44	_
Mineralight	254nm [21]	44	_
Evident Products CE	365nm [21]	44	_
Bluemaxx Mini	450nm [21]	44	_
Lumatec Superlite 400	415nm + Orange goggles [9]	1	1
		28	1/10
		29	1/10
		30	1/10
		31	1/100
		32	1/10
		25	1/10
		33	1
		34	1
Spectra-Physics Reveal	532nm + 532nm block goggles [9]	1	1
laser		28	1/10
		29	1/10
		30	1/10
		31	1/100
		32	1/10
		25	1/10
		33	1
		34	1

1°) Análise dos vestígios



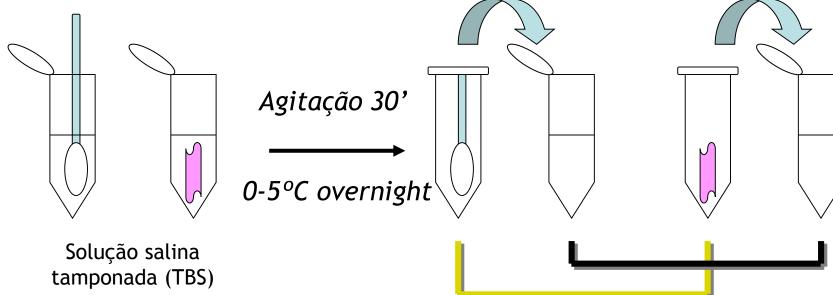
1°) Análise dos vestígios ———— Análise visual -

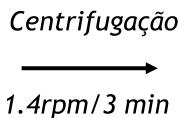
1°) Análise dos vestígios

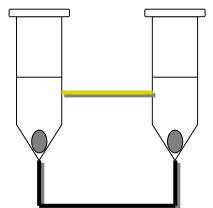


1°) Análise dos vestígios

1°) Análise dos vestígios

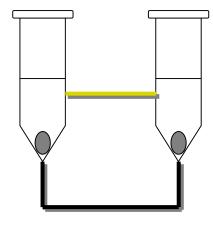




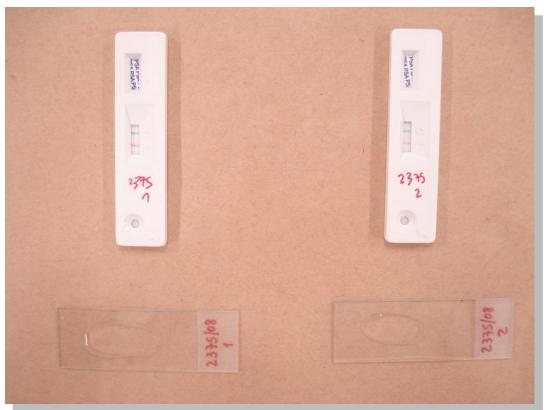


2°) Testes Confirmatórios

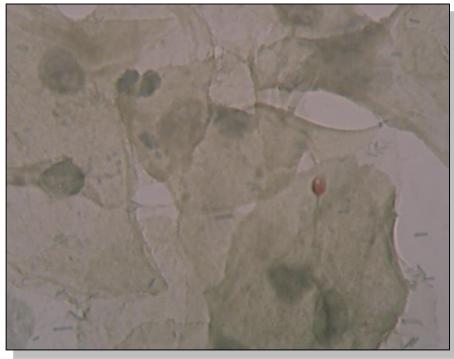
Sobrenadante pesquisa de PSA


Amostras para contra-prova

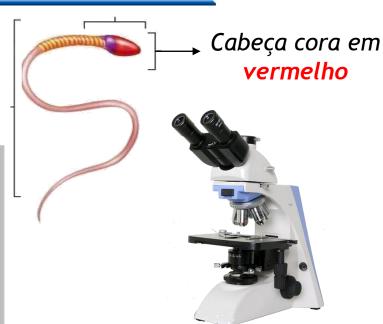
SedimentoPesquisa de SPTZ

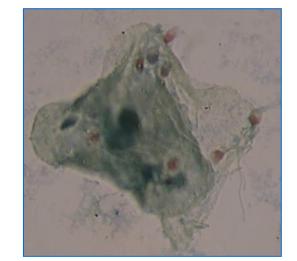


2°) Testes Confirmatórios



Sobrenadante pesquisa de PSA


SedimentoPesquisa de SPTZ


2°) Testes Confirmatórios Coloração Christhmas Three Células epiteliais coram em verde

Leitura em imersão 100x

LAUDO PERICIAL

✓ Resultados positivos = não confirmam crime sexual

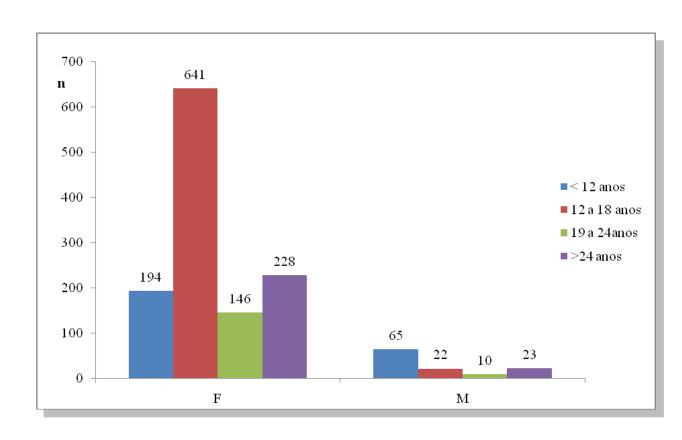
Consentimento

Exame de conjunção carnal

✓ Resultado PSA (+) e ausência de espermatozóides = presença de esperma

Degradação

Azoos/oligospérmicos Vasectomizados


√ Resultado PSA (-) e presença de espermatozóides = presença de esperma

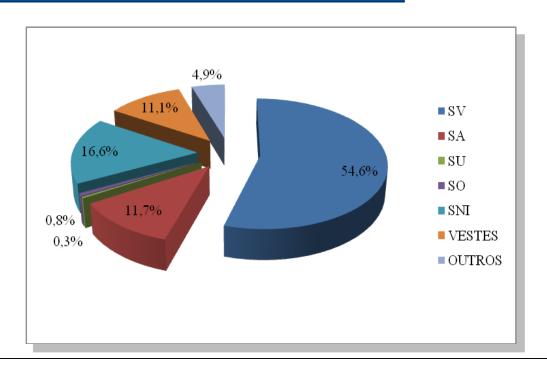
Degradação

Tempo decorrido

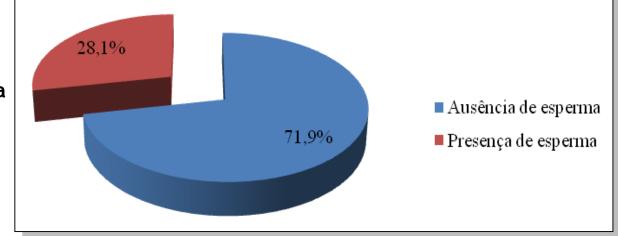
• Casos IAF 20017 a 2009

- Sexo x Idade
- 4 anos;
- n = 1581 casos;
- itens= 2666

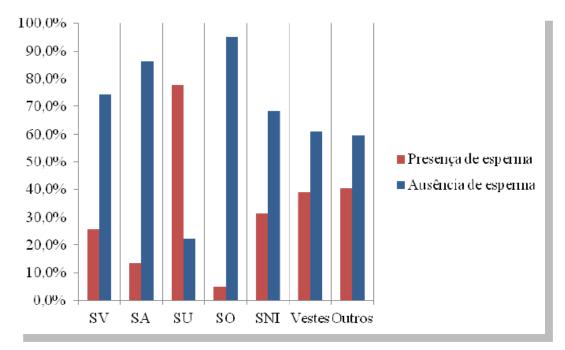
• Tipo de Vestígio

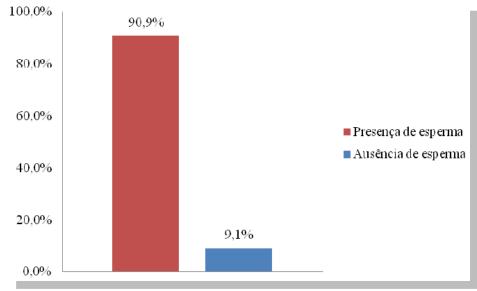

✓ SV: 54,6%

✓ SA: 11,7%


✓ SNI: 16,6%

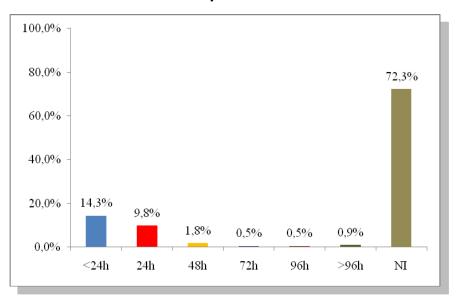
✓ Vestes: 11,1%


✓ Outros: 4,9%

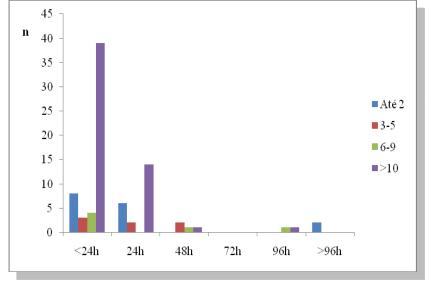


• Presença de Esperma

Presença de esperma
 X
 tipo de vestígio



 Presença de esperma em vestígios compostos


(swabs + vestes)
44 casos
40 positivos (90,9%)

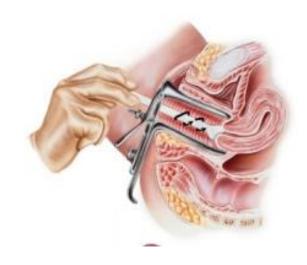
• Intervalo de tempo entre a violência e coleta x presença de esperma (PSA)

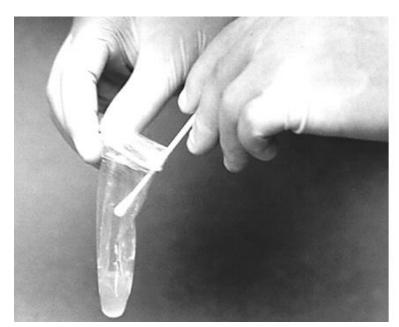
O intervalo pode interferir no resultado das análises!

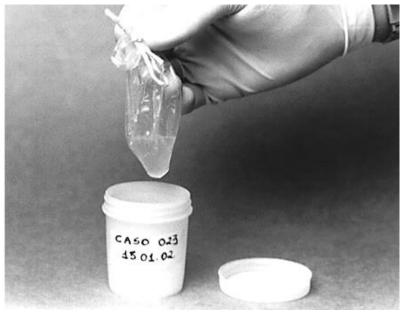
Intervalo de tempo entre a violência e coleta
 x
 presença de espermatozóides

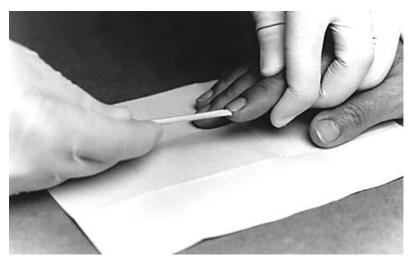
Outros vestígios...

Violência Sexual

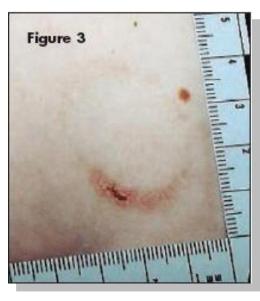

Conjunção carnal

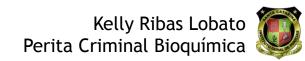

Mordidas lambidas


Defesa


Pelos pubianos

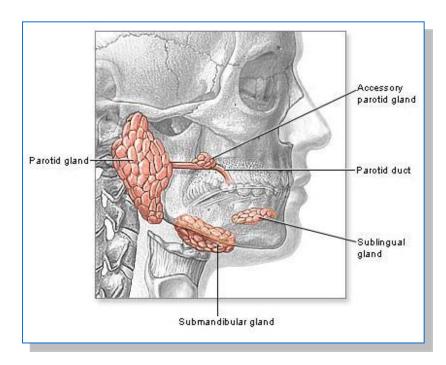





V- Pesquisa de Saliva

28 e 29 de agosto de 2014

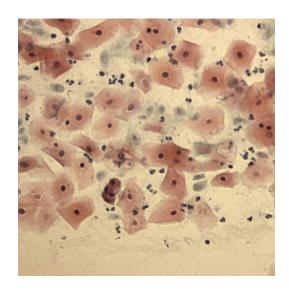
Local: Auditório do Bloco H do Centro de Ciências da Saúde da Universidade Federal de Santa Catarina (UFSC)


Informações e Inscrições:

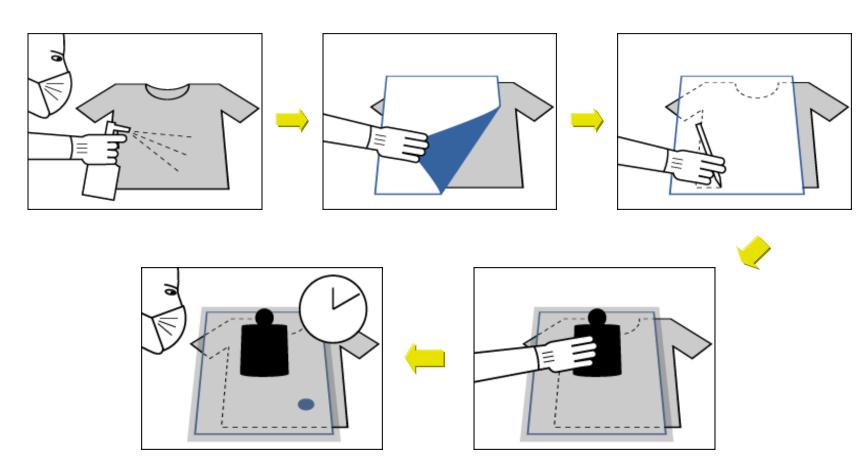
www.seac.paginas.ufsc.br

V - Pesquisa de Saliva 👌

Saliva: formada a partir da secreção das diferentes glândulas, restos alimentares, microrganismos e células descamadas do epitélio oral.



V - Pesquisa de Saliva 💋



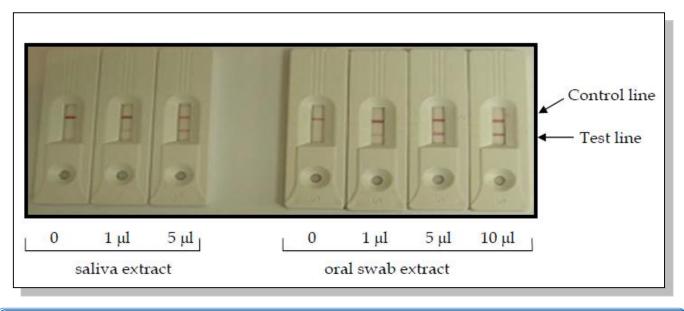
Coleta -> Quantificação genética

V - Pesquisa de Saliva 👌

PESQUISA DE SALIVA

Teste Preliminar

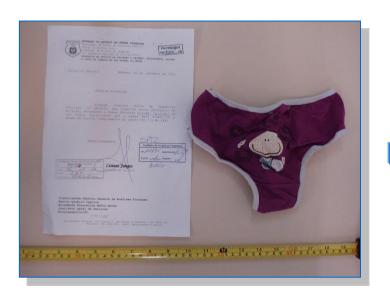
TESTE DE PHADEBAS®


 ▲ A presunção de saliva pela determinação da amilase, permite o delineamento do material a ser testado

V - Pesquisa de Saliva

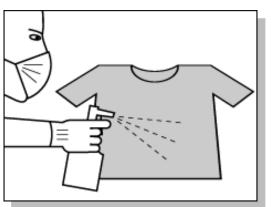
PESQUISA DE SALIVA

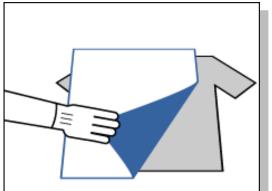
Teste Confirmatório

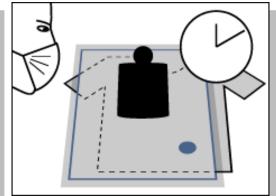


O material periciado contém amilase salivar humana

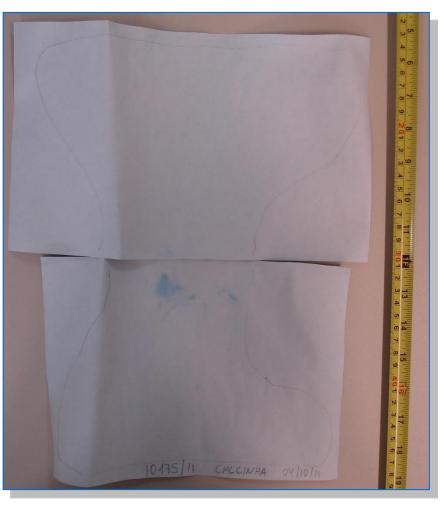
V - Pesquisa de Saliva 💋


CASO PESQUISA DE SALIVA




✓ Inicialmente, encaminhado para pesquisa de esperma;

√ Após resultados negativos e contato com a DP → Pesquisa de Saliva



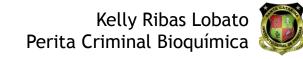
Permite o delineamento do material a ser individualizado por genotipagem.

V - Pesquisa de Saliva 👌

CASO PESQUISA DE SALIVA

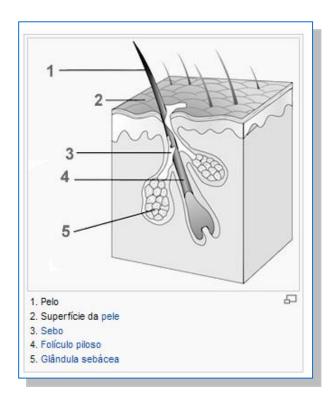
V - Pesquisa de Saliva

V - Pesquisa de Saliva 💋

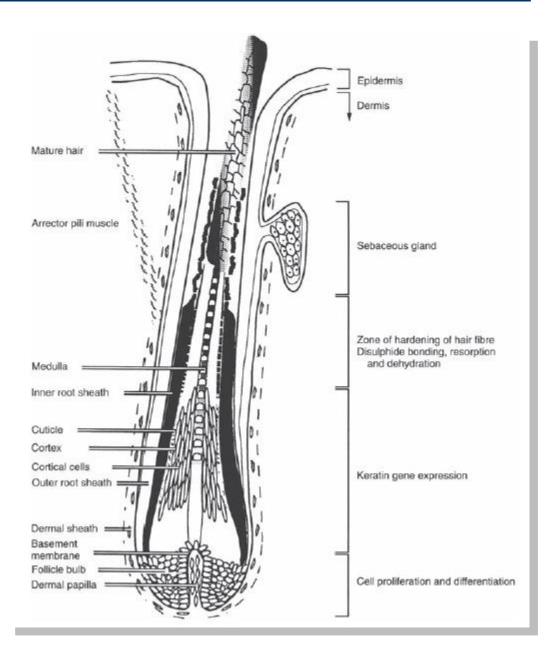


28 e 29 de agosto de 2014

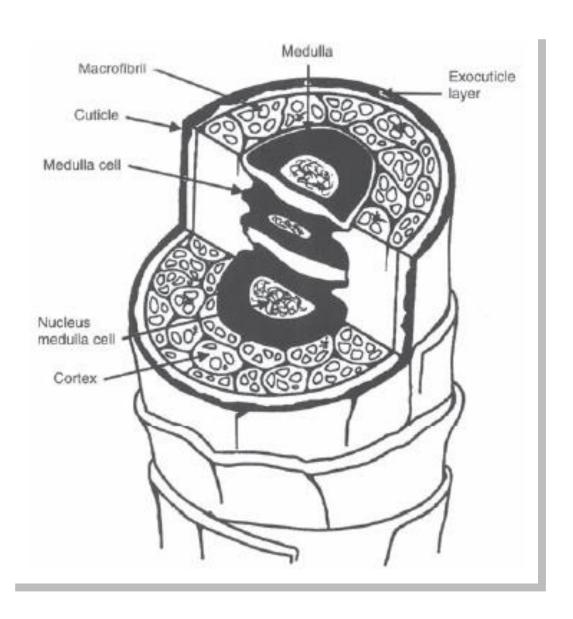
Local: Auditório do Bloco H do Centro de Ciências da Saúde da Universidade Federal de Santa Catarina (UFSC)

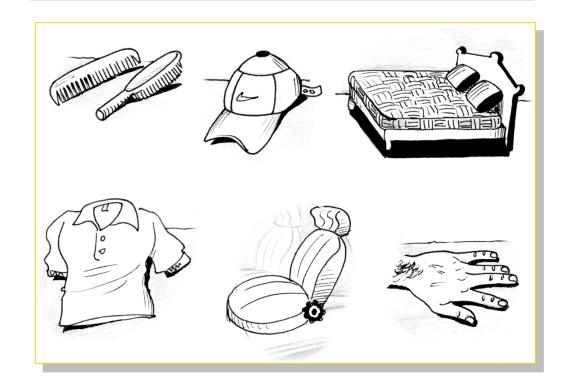

Informações e Inscrições:

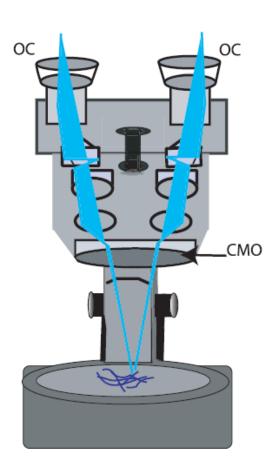
www.seac.paginas.ufsc.br



- ✓ Vestígio comumente encontrado em local de crime, devido a sua constante renovação;
- ✓ Importante vestígio em casos de violência sexual;
- ✓ Pode ser submetidos técnicas de genética molecular já bem estabelecidas para DNA autossômico e DNA mitocondrial são as mais utilizadas.

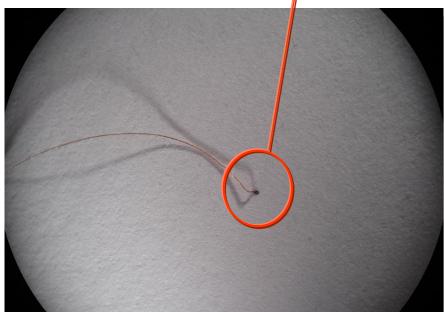


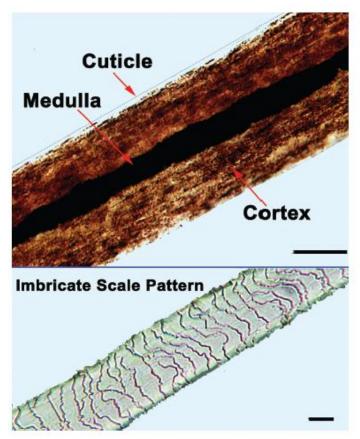


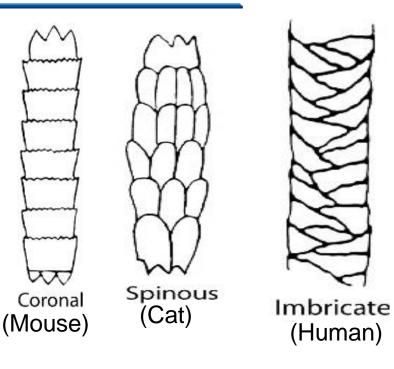

✓ Quesitos formulados

- 1. Qual a natureza do material periciado?
- 2. Existem pelos aderidos ao material periciado?
- 3. Tratam-se de pelos humanos?
- 4- O pelo pertence ao suspeito/vítima?

- ✓ Características macroscópicas:
- Coloração;
- Tamanho;
- Quantidade.






DNA autossômico

DNA mitocondrial

- ✓ Características microscópicas:
- Cutícula: irregulares e sobrepostas;
- Cortical: células alongadas;
- Medula: menos de 1/3, amorfa, continua ou não.

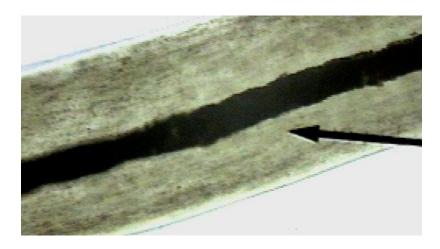
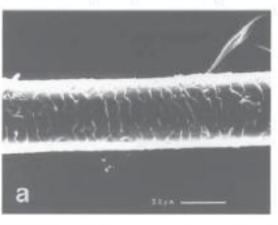
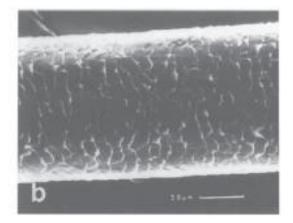
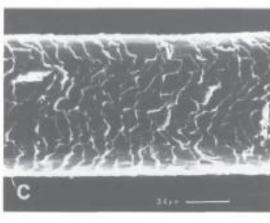
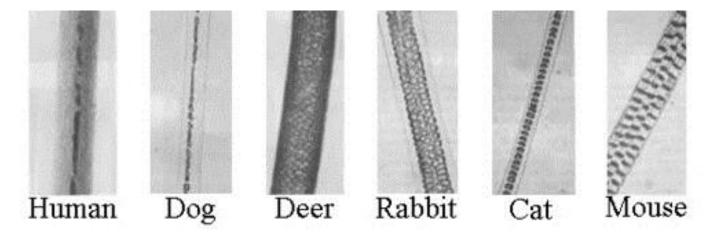
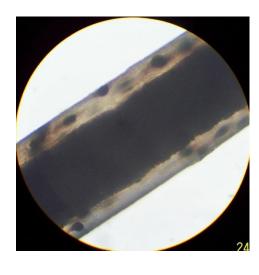
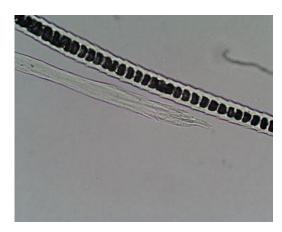





Figure 1.10 Light micrographs showing (a) the typical human scale pattern on a (white) scalp hair, and (b) a worn tip end of scalp hair from which the cuticle has been lost and the cortical cells are starting to separate and fray



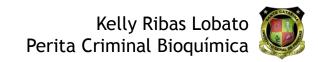

Figure 3. Light micrographs of three human hairs. The left example illustrates dark hair with a typical fragmentary medulla. The middle hair is blond and has no medulla. The right coarser hair is white with a continuous medulla.



Laudo Pericial:

- I- Análises macroscópicas: quantidade, formato, cor e presença de buldo.
- II- Análises microscópicas: camadas características ou não de pelo humano.

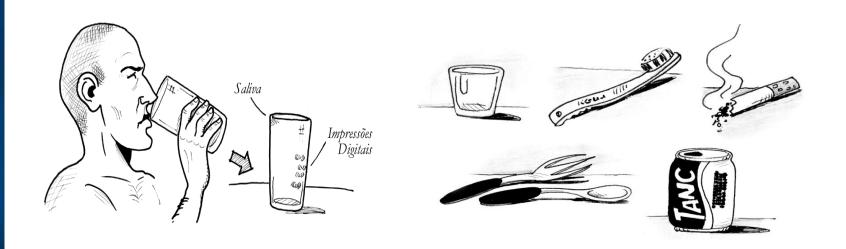
CASO PESQUISA DE PELOS


VII- Quantificação Genética

28 e 29 de agosto de 2014

Local: Auditório do Bloco H do Centro de Ciências da Saúde da Universidade Federal de Santa Catarina (UFSC)

Informações e Inscrições:


www.seac.paginas.ufsc.br

VII - Quantificação Genética

✓ Exame que objetiva determinar a **quantidade de DNA humano** presente em determinado material;

Material biológico não identificável Material pós luminol Material em baixa concentração

Materiais: Toco de cigarro, Selo postal, Aba de envelope Impressão digital, Lâmina de barbear, chiclete, boné, toca, relógio de pulso, tampão de ouvido, escova de dente

VII - Quantificação Genética

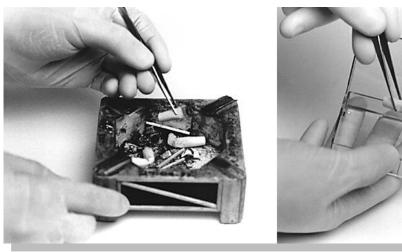
√ Técnica:

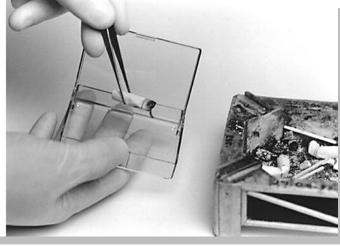
Coleta

Extração de DNA Método orgânico

PCR em tempo real

PCR tempo real


II - Coleta e Preservação de Amostras



VII - Quantificação Genética

✓ Materiais:

VII - Quantificação Genética

Laudo Pericial - Dentro dos limites:

II - OBJETIVO PERICIAL

O presente exame tem por finalidade quantificar DNA Humano Total (Autossômico) e DNA Masculino Total (Y) no material de contra-prova (toalha) do Laudo Pericial nº 6799/12 (Pesquisa de Sangue).

III - EXAMES

III. 1- MATERIAL E MÉTODOS

III. 1.1- MATERIAL RECEBIDO

Aos Peritos foram apresentados pedaços de tecido da toalha (contraprova do Laudo Pericial nº 6799/12 - Pesquisa de Sangue, deste Instituto) – protocolo de análise 132QT12.

III. 1.2 - MÉTODOS

III. 1.2.1 – EXTRAÇÃO DO DNA

Alíquota da Amostra foi submetida ao método de extração orgânica, realizadas segundo os procedimentos próprios utilizados pelo FBI (Federal Bureau of Investigation)¹.

III. 1.2.2 - QUANTIFICAÇÃO

Alíquota do extrato foi submetida à quantificação com o emprego do sistema comercial Investigator® Quantiplex HYres Kit² da empresa QIAGEN, e do sistema iQ5 Real-Time PCR Detection System da empresa Bio-Rad, programados de acordo com protocolos fornecidos pelo fabricante dos sistemas utilizados.

IV - RESULTADOS

Protocolo de análise 132QT12:	DNA Humano Total (Autossômico): 0,018 ng/uL
	DNA Masculino Total (Y): 0,010 ng/µL

SCENE

VII - Quantificação Genética

✓ Laudo Pericial:

LAUDO PERICIAL nº 3437/13

V – ANÁLISE E INTERPRETAÇÃO DOS RESULTADOS

Os sistemas de amplificação e genotipagem simultânea de STR's, disponíveis nesse Instituto, são otimizados para amplificar e genotipar DNA em uma faixa de 0,05-0,1 ng/uL, com limites de detecção estimados em 0,025ng/uL³. Portanto, as quantidades obtidas no protocolo de análise 132QT12, estão dentro destes limites de detecção.

VI - INFORMAÇÕES PERICIAIS

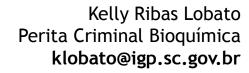
A análise de vestígios biológicos relacionados a crimes é dependente da quantidade e da qualidade do material genético obtido destas evidências. Portanto, quantidades diminuídas ou degradadas de DNA, podem limitar parcial ou totalmente a obtenção de um perfil genético informativo.

VII - CONCLUSÃO

Conclui-se que no material de contra-prova (toalha) do Laudo Pericial nº 6799/12 (Pesquisa de Sangue), relacionado com a Ocorrência nº 283 do Núcleo Regional de Perícias de Blumenau, foram detectadas concentrações de DNA Humano Total (autossômico) e de DNA Masculino (Y), dentro dos limites de detecção estimados para os sistemas comerciais utilizados na amplificação e genotipagem simultânea de STR´s, utilizados neste Instituto.

OBSERVAÇÕES

- (1) A amostra periciada de contraprova do Laudo Pericial 6799/12, fica armazenada neste Instituto.
- (2) A toalha periciada no Laudo Pericial 6799/12 (Pesquisa de Sangue), seguirá em anexo.


Obrigada!

28 e 29 de agosto de 2014

Local: Auditório do Bloco H do Centro de Ciências da Saúde da Universidade Federal de Santa Catarina (UFSC)

Informações e Inscrições:

www.seac.paginas.ufsc.br

